Cho tam giác ABC, M là trung điểm của BC. Chứng minh rằng :
a) Nếu AM \(\frac{BC}{2}\)= thì góc A=90 độ
b) Nếu AM > \(\frac{BC}{2}\) thì góc A<90 độ
c) Nếu AM < \(\frac{BC}{2}\) thì góc A>90 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)nối AM lại ta có đường trung tuyến AM
mà AM=1/2.BC =>\(\Delta ABC\perp\)tại A=>góc A=90o
Còn câu b,c bạn tự làm nha chế mình ko bt kaka
Theo cách giải lớp 8 :v
Lấy D đối xứng với A qua M . Ta có :
\(\left\{{}\begin{matrix}MA=MD\\MB=MC\end{matrix}\right.\Rightarrow ABCD\) là hình bình hành .
Mà có \(\widehat{A}=90^0\) nên ABCD là hình chữ nhật
\(\Rightarrow AD=BC\) ( Hình chữ nhật có 2 đường chéo bằng nhau )
Mặt khác \(AM=\dfrac{1}{2}AD\Rightarrow AM=\dfrac{1}{2}BC\left(đpcm\right)\)
ABC vuông tại A thì ABC nội tiếp đường tròn đường kính BC
M là trung điểm BC => AM=BM=CM=R(bán kính đường tròn)
Dễ dàng chỉ ra được các kết luận trên nhờ quan hệ giữa góc và cạnh đối diện trong tam giác.
Ta có :
a) AM = BC/2 = BM
Vậy tam giác ABM cân tại M. Vậy thì \(\widehat{B}=\widehat{A_1}\)
Tương tự \(\widehat{B}=\widehat{A_2}\Rightarrow\widehat{A}=\widehat{A_1}+\widehat{A_2}=\widehat{B}+\widehat{C}\)
Mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}=90^o\)
b) AM > BM thì \(\widehat{B}>\widehat{A_1};\widehat{C}>\widehat{A_2}\),
\(\Rightarrow\widehat{B}+\widehat{C}>\widehat{A}\) , mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}< 90^o\)
c) AM < BM thì \(\widehat{B}< \widehat{A_1};\widehat{C}< \widehat{A_2}\),
\(\Rightarrow\widehat{B}+\widehat{C}< \widehat{A}\) , mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}>90^o\)
a) Có M là trung điểm BC (đề bài)
=> AM là đường trung tuyến
mà AM = BC/2 (trong tam giác VUÔNG đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền)
=> Tam giác ABC vuông tại A
=> Góc A = 90 độ
Câu b,c đang nghĩ nhé