Cho phương trình:
\(x^2+\left(2m+1\right)x-n+3=0\)(m, n là tham số)
a) Xác định m, n để phương trình có 2 nghệm -3 và -2
b) Trong TH m=2 tìm số nguyên dương n bé nhất để phương trình đã cho có nghiệm dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
`B4:`
`a)` Thay `x=3` vào ptr:
`3^3-3^2-9.3-9m=0<=>m=-1`
`b)` Thay `m=-1` vào ptr có: `x^3-x^2-9x+9=0`
`<=>x^2(x-1)-9(x-1)=0`
`<=>(x-1)(x-3)(x+3)=0<=>[(x=1),(x=+-3):}`
`B5:`
`a)` Thay `x=-2` vào có: `(-2)^3-(m^2-m+7).(-2)-3(m^2-m-2)=0`
`<=>-8+2m^2-2m+14-3m^2+3m+6=0`
`<=>-m^2+m+12=0<=>(m-4)(m+3)=0<=>[(m=4),(m=-3):}`
`b)`
`@` Với `m=4` có: `x^3-(4^2-4+7)x-3(4^2-4-2)=0`
`<=>x^3-19x-30=0`
`<=>x^3-5x^2+5x^2-25x+6x-30=0`
`<=>(x-5)(x^2+5x+6)=0`
`<=>(x-5)(x+2)(x+3)=0<=>[(x=5),(x=-2),(x=-3):}`
`@` Với `m=-3` có: `x^3-[(-3)^2-(-3)+7]x-3[(-3)^2-(-3)-2]=0`
`<=>x^3-19x-30=0<=>[(x=5),(x=-2),(x=-3):}`
bạn ơi ... cái này ...... bạn làm đc mà thế m vào lập delta thôi
Phương trình \(x^2+\left(2m+1\right)x-n+3=0\)0
Khi m=2 thì
phương trình thành \(x^2+5x-n+3=0\)
(tìm a,b,c)
Lập \(\Delta=b^2-4ac\)
\(=25+4n-12\)
\(=4n+13\)
để pt có nghiệm thì \(n\ge\frac{-13}{4}\)
Vì phương trình có nghiệm theo viet
\(\hept{\begin{cases}x_1+x_2=-5\\x_1.x_2=-n+3\end{cases}}\)
để phương trình có 2 nghiệm dương thì tổng của chúng phải lớn hơn 0 mà theo viet ta thấy là âm
Nên ko có giá trị nguyên dương nào của n để pt có 2 nghiệm dương
a: Để phương trình có hai nghiệm trái dấu thì m+2<0
hay m<-2
a/ theo định lí Vi-ét ta có : x1+x2 = -1-2m hay -3-2 = -1-2m <=>m=2
và x1x2 = c/a = -n+3 hay (-3).(-2) = -n+3 <=> n= -3
Mình mới làm kịp câu thôi vì mình bận lắm nên bữa khác giải quyết nha