1 , 3/4 x 8 - y = 1 2/5
2, 3/4 : 2/4 + y = 19/15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{8}{9}\) : ( 2 - 3 \(\times\) y) = \(\dfrac{5}{3}\)
2 - 3 \(\times\) y = \(\dfrac{8}{9}\) : \(\dfrac{5}{3}\)
2 - 3 \(\times\) y = \(\dfrac{8}{15}\)
3 \(\times\) y = 2 - \(\dfrac{8}{15}\)
3 \(\times\) y = \(\dfrac{22}{15}\)
y = \(\dfrac{22}{15}\) : 3
y = \(\dfrac{22}{45}\)
a)\(=\dfrac{3}{3}+\dfrac{4}{3}=\dfrac{7}{3}\)
b)\(=\dfrac{5}{9}\times\dfrac{3}{2}=\dfrac{15}{18}=\dfrac{5}{6}\)
d)\(=\left(\dfrac{12}{8}-\dfrac{3}{8}\right)\times2=\dfrac{9}{8}\times2=\dfrac{18}{8}=\dfrac{9}{4}\)
c)\(=\dfrac{4}{3}-\dfrac{5}{6}=\dfrac{8}{6}-\dfrac{5}{6}=\dfrac{3}{6}=\dfrac{1}{2}\)
a) 1 + 4/3 = 7/3
b) 5/9 : 2/3 = 5/6
c ) 4/3 -1/3 x 5/2
= 1 x 5/2
= 5/2
d) ( 3/2 - 3/8) : 1/2
= 9/8 : 1/2
= 9/4
e) 15/16 : 3/8 x 3/4
= 5/2 x 3/4
= 15/8
f) 7/19 x 1/3 x 7/19 x 2/3
= 7/19 x (1/3 x 2/3)
= 7/19 x 2/9
= 14/171
g) 3/5 x 8/27 x 25/3
= 3/5 x 25/3 x 8/27
= 5 x 8/27
= 40/27
h) 1/5 + 4/11 + 4/5 + 7/11
= (1/5 + 4/5) + (4/11 + 7/11)
= 1 + 1
= 2
1: x=3/4-1/2=3/4-2/4=1/4
2: x-1/5=2/11
=>x=2/11+1/5=21/55
3: x-5/6=16/42-8/56
=>x-5/6=8/21-4/28=5/21
=>x=5/21+5/6=15/14
4: x/5=5/6-19/30
=>x/5=25/30-19/30=6/30=1/5
=>x=1
5: =>|x|=1/3+1/4=7/12
=>x=7/12 hoặc x=-7/12
6: x=-1/2+3/4
=>x=3/4-1/2=1/4
11: x-(-6/12)=9/48
=>x+1/2=3/16
=>x=3/16-1/2=-5/16
1)x= 1/4
2)x= 2/11+ 1/5
x= 21/55
3)x - 5/6 = 5/21
x = 5/21+5/6
x = 15/14
4)x/5 = 5/6 + -19/30
x:5 = 1/5
x = 1/5.5
x = 1
5) |x| - 1/4 = 6/18
|x| = 6/18 - 1/4
|x| =7/12
⇒x= 7/12 hoặc -7/12
6)x = -1/2 +3/4
x= 1/4
7) x/15 = 3/5 + -2/3
x:15 = -1/15
x = -1/15. 15
x = -1
8)11/8 + 13/6 = 85/x
85/24 = 85/x
⇒ x = 24
9) x - 7/8 = 13/12
x = 13/12 + 7/8
x = 47/24
10)x - -6/15 = 4/27
x = 4/27 + (-6/15)
x = -34/135
11) -(-6/12)+x = 9/48
x= 9/48 - 6/12
x = -5/16
12) x - 4/6 = 5/25 + -7/15
x -4/6 = -4/15
x = -4/15 + 4/6
x = 2/5
1.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}\\x^4+y^2+xy\left(1+2x\right)=-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y\right)+xy+xy\left(x^2+y\right)=-\dfrac{5}{4}\\\left(x^2+y\right)^2+xy=-\dfrac{5}{4}\end{matrix}\right.\left(1\right)\)
Đặt \(\left\{{}\begin{matrix}x^2+y=a\\xy=b\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a+b+ab=-\dfrac{5}{4}\\a^2+b=-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-a^2-\dfrac{5}{4}-a\left(a^2+\dfrac{5}{4}\right)=-\dfrac{5}{4}\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a^3-\dfrac{1}{4}a=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a\left(a^2-a+\dfrac{1}{4}\right)=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a\left(a-\dfrac{1}{2}\right)^2=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=0\\xy=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt[3]{10}}{2}\\y=-\dfrac{5}{2\sqrt[3]{10}}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=\dfrac{1}{2}\\xy=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)
Kết luận: Phương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(\dfrac{\sqrt[3]{10}}{2};-\dfrac{5}{2\sqrt[3]{10}}\right);\left(1;-\dfrac{3}{2}\right)\right\}\)
2.
\(\left\{{}\begin{matrix}\left(x+1\right)^3-16\left(x+1\right)=\left(\dfrac{2}{y}\right)^3-4\left(\dfrac{2}{y}\right)\\1+\left(\dfrac{2}{y}\right)^2=5\left(x+1\right)^2+5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+1=u\\\dfrac{2}{y}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^3-16u=v^3-4v\\v^2=5u^2+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u^3-v^3=16u-4v\\4=v^2-5u^2\end{matrix}\right.\)
\(\Rightarrow4\left(u^3-v^3\right)=\left(16u-4v\right)\left(v^2-5u^2\right)\)
\(\Leftrightarrow21u^3-5u^2v-4uv^2=0\)
\(\Leftrightarrow u\left(7u-4v\right)\left(3u+v\right)=0\Rightarrow\left[{}\begin{matrix}u=0\Rightarrow v^2=4\\u=\dfrac{4v}{7}\Rightarrow4=v^2-5\left(\dfrac{4v}{7}\right)^2\\v=-3u\Rightarrow4=\left(-3u\right)^2-5u^2\end{matrix}\right.\)
\(\Rightarrow...\)
a) \(-\frac{4}{15}\cdot\left(-\frac{3}{8}\right)\cdot\left(\frac{15}{-4}\right)\cdot8\)
\(=\left(-\frac{4}{15}\cdot\left(\frac{15}{-4}\right)\right)\cdot\left(-\frac{3}{8}\cdot8\right)\)
\(=1\cdot\left(-3\right)=-3\)
b) \(-\frac{2}{3}\cdot\frac{4}{19}+\frac{5}{3}\cdot\frac{4}{19}\)
\(=\frac{4}{19}\cdot\left(\frac{5}{3}-\frac{2}{3}\right)\)
\(=\frac{4}{19}\cdot1=\frac{4}{19}\)
c) \(-\frac{1}{2}\cdot\frac{5 }{3}+\frac{1}{2}\cdot\frac{8}{3}\)
\(=\frac{1}{2}\left(\frac{8}{3}-\frac{5}{3}\right)\)
\(=\frac{1}{2}\cdot1=\frac{1}{2}\)
a) = 17/19 - 17/19 + 27/35 + 35/35 = 0 + 62/35
b) = 1/3 x 4/5 + 1/3 x6/5 + 1/3 x 2 = 1/3(4/5 + 6/5 + 2) = 1/3 x 4 = = 4/3
c) 4/7 x 2/9 + 4/7 x 7/9 + 2/3 = 4/7 x (2/9 + 7/9) + 2/3 = 4/7 x 1 + 2/3 = 26/21
A) 17/19 - 17/19 + 27/35 + 35/35 = 0 + 62/35
B) 1/3 x 4/5 + 1/3 x 6/5 + 1/3 x 2 = 1/3 x(4/5 + 6/5 x 2 ) = 1/3 x 4 = 4/3
c) TƯƠNG TỰ CÂU A VÀ B
* HOKTOT*
NHA
\(\frac{1,3}{4}\times8-y=1\frac{2}{5}\)
\(\frac{13}{40}\times8-y=\frac{7}{5}\)
\(\frac{13}{5}-y=\frac{7}{5}\)
\(y=\frac{13}{5}-\frac{7}{5}\)
\(y=\frac{6}{5}\)
b) \(\frac{2,3}{4}\div\frac{2}{4}+y=\frac{19}{15}\)
\(\frac{23}{40}\times2+y=\frac{19}{15}\)
\(\frac{23}{20}+y=\frac{19}{15}\)
\(y=\frac{19}{15}-\frac{23}{20}\)
\(y=\frac{7}{60}\)