cho 3 số dương a,b,c có tổng bằng 1 chứng minh rằng 1/a +1/b +1/c lớn hơn hoặc bằng 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a,b,c > 0 áp dụng BĐT Cauchy, ta có
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
Cmtt: \(\dfrac{c}{a}+\dfrac{a}{c}\ge2\) và \(\dfrac{b}{c}+\dfrac{c}{b}\ge2\)
Theo đề bài, ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)(do a + b + c = 1)
\(=1+\dfrac{a}{b}+\dfrac{a}{c}+1+\dfrac{b}{a}+\dfrac{b}{c}+1+\dfrac{c}{a}+\dfrac{c}{b}\)
\(=3+\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{a}{c}+\dfrac{c}{a}+\dfrac{b}{c}+\dfrac{c}{b}\)\(\ge3+2+2+2=9\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{3+a+b+c+}=\frac{9}{6}=\frac{3}{2}\)
Bài toán sai.
Ví dụ: a \(\ge\) b \(\ge\) c 1
Thì có a=1, b=1, c=1
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{b+1}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}<2\)
999 - 888 - 111 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111 + 111 - 111
= 0 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111
= 0 + 111 - 111
= 111 - 111
= 0
Đề bài sai nếu \(x;y\in R\)
Cho \(y=4;x=-0,000001\) thì vế trái ra 1 số âm có trị tuyệt đối cực to
Đề đúng phải là \(x;y\in R^+\)
Làm trong trường hợp đề đã chỉnh lại:
\(VT=x+y+\frac{1}{2x}+\frac{2}{y}=\frac{x}{2}+\frac{1}{2x}+\frac{y}{2}+\frac{2}{y}+\frac{1}{2}\left(x+y\right)\)
\(VT\ge2\sqrt{\frac{x}{2}.\frac{1}{2x}}+2\sqrt{\frac{y}{2}.\frac{2}{y}}+\frac{1}{2}.3=\frac{9}{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Áp dụng bđt Cauchy:
\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự:
\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)
Cộng theo vế: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{1}{2}\left(ab+bc+ac\right)\ge3-\frac{1}{6}\left(a+b+c\right)^2=3-\frac{3}{2}=\frac{3}{2}\)\("="\Leftrightarrow a=b=c=1\)
ta có ( a+b)2 =1 hay a2 +2ab + b2 =1
laị có ( a-b)2 \(\ge\) 0 hay a2 - 2ab + b2 \(\ge\) 0
Cộng vế vs vế của các BDT trên ta đc: 2 ( a2 + b2 ) \(\ge\) 1
\(\Rightarrow\) a2 + b2 \(\ge\) 0,5
a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)
b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)
Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)
c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1
+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên
a) \(\overline{aaa}=100a+10a+a=111a\)
mà \(111=37.3⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)
b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)
\(\Rightarrow dpcm\)
-Áp dụng BĐT Caushy Schwarz ta có:
\(\dfrac{1^2}{a+1}+\dfrac{1^2}{b+1}\ge\dfrac{\left(1+1\right)^2}{a+b+1+1}=\dfrac{4}{3}\)
-Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)