tìm số tự nhiên có 2 chữ số ,sao cho tổng của nó và số gồm hai chữ số ấy viết theo thứ tự ngược lại là một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab (a;b thuộc N;a #0;a,b nhỏ hơn hoặc bằng 9)
Tổng là : n^2
=)ab-ba=n^2
=)a.9+b.9=n^2
=)9.(a+b)=n^2
=)n^2 chia hết cho 9
Mà a>b>0=)(a-b) lớn nhất là 9-1=8
n^2=8.9=72=)n nhỏ hơn hoặc bằng 8
Rồi bạn thử các trường hợp từ 0 cho đén 8
Rồi có 2 trường hợp chọn được rồi bạn phân tích thành phép cộng của a+b
Mà ab và ba là 2 số nguyên tố =)Bạn loại các trường hợp không phải số nguyên tố rồi kết luận số cần tìm.
gọi số cần tìm là ab (a, b = 1,2,..., 9)
giả thiết ta có: (ab)² - (ba)² = n² (ab và ba có gạch đầu)
<=> (10a+b)² - (10b+a)² = n² <=> [(10a+b) - (10b+a)][(10a+b) + (10b+a)] = n²
<=> (9a-9b)(11a+11b) = n² <=> 3².11.(a-b)(a+b) = n² (*)
do 11 là số nguyên tố nên (*) chỉ xãy ra khi a-b hoặc a+b có ước là 11
0 < a, b < 9 nên a+b < 22 và a-b < 9 vậy chỉ có 1 khã năng là a+b = 11
và ta còn phải có a-b là số chính phương (có thể mò vài cặp là đc) hoặc biện luận:
thấy a > b ; a+b = 11 => a = 11-b > 11/2 , chỉ cần kiểm tra cho b từ 1 đến 5
b = 1, a = 10 thỏa ; b = 5, a = 6 thỏa
vậy có 2 số thỏa mãn yêu cầu là: 11 và 65
(cái số 11 hơi kì nhưng vẫn thỏa mãn: 11² - 11² = 0² )
duong nhien la 11 va 65 roi ban oi neu ko tic minh la ban hoc giot
gọi số đó là ab
ab +ba = 11a + 11b chia het cho 11
=> ab +ba chia het cho11
nhớ tick cho mình nha
Gọi số cần tìm là ab (a khác 0; a,b < 10)
Ta có:
ab + ba = 10a + b + 10b + aq = 11a + 11b = 11(a + b)
Vì a + b là số chính phương nên a + b chia hết cho 11.
Mà 1 \(\le\) a < 10
0 \(\le\) b < 10
=> 1 \(\le\) a + b < 20
=> a + b = 11.
Ta có bảng sau :
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
Vậy có 8 số thỏa mãn đề bài.
Bài 1: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$
Theo bài ra ta có:
$\overline{ab}-\overline{ba}=10a+b-(10b+a)=9(a-b)$ là 1 scp.
Mà $9$ cũng là 1 scp nên để $9(a-b)$ là scp thì $a-b$ là scp.
$a,b$ là các số tự nhiên có 1 chữ số nên $a-b<10$
$\Rightarrow a-b\in\left\{0,1,4,9\right\}$
Nếu $a-b=0$ thì $a=b$. Ta có các số $11,22,33,44,55,....,99$ đều thỏa mãn.
Nếu $a-b=1$ thì $a=b+1$. Ta có các số $10, 21,32,43,54,65,76,87,98$ đều thỏa mãn.
Nếu $a-b=4$ thì $a=b+4$. Ta có các số $40, 51, 62, 73, 84, 95$ đều thỏa mãn
Nếu $a-b=9$ thì $a=b+9$. Ta có số $90$ thỏa mãn.
Bài 2: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$.
Theo bài ra ta có:
$\overline{ab}+\overline{ba}=10a+b+10b+a=11(a+b)$
Để tổng này là scp thì $a+b=11m^2$ với $m$ là số tự nhiên.
$\Rightarrow a+b\vdots 11$.
Mà $a,b$ là số tự nhiên có 1 chữ số nên $a+b< 20$
$\Rightarrow a+b=11$
$\Rightarrow (a,b)=(2,9), (3,8), (4,7), (5,6), (6,5), (7,4), (8,3), (9,2)$
Vậy số thỏa mãn là $29,38,47,56,65,74,83,92$
refer
gọi số có ba chữ số đó là abc (0<a; 0<a,b,c<9)
Ta có abc- cba =a.100 +b.10 +c-c .100 -b.10 -c = 99.a -99.c =99.(a-c) =9.11 (a-c)
Vì 9 = 3^2 nên để abc là số chính phương thì 11.(a-c) phải là số chính phương
=> a-c thuộc B (11) mà 0<a,c <9 do đó a-c<9 nên a-c = 0
=> a=c
nên số đó có dạng aba
Refer:
Gọi số có 3 chữ số đó là abc ( Điều kiện: 0 < a < 10 ; -1 < b,c < 10) , số ngược lại là cba ( Điều kiện: 0< c < 10 ; -1< b,a < 10)
abc - cba = 100a +10b +c - 100c - 10b - a = 99a +0b - 99c
Từ trên => 0b = 0 với mọi b
=> b= 0
Còn lại 99a - 99c =99.(a - c)
để cho hiệu là số chính phương thì a - c là số chính phương
Để thỏa điều kiện trên thì a - c = 1;3;5;7 vì 1;3;5;7 là số chính phương
Gọi số cần tìm là ab
Theo bài ra, ta có:
ab+ba=n2
=>10a+b+10b+a=n2
=>11(a+b)=n2
=>n2⋮11
=>n2⋮112
=>11(a+b)⋮112
=>(a+b)=11
=>a,b∈\(\left\{\left(9,2\right);\left(8,3\right);\left(7,4\right);\left(6,5\right);\left(5.6\right);\left(4.7\right);\left(3.8\right)\left(2,9\right)\right\}\)
=>ab∈\(\left\{92;83;74;65;56;47;38;29\right\}\)