TÌM GIÁ TRỊ NGUYÊN CỦA X ĐỂ CÁC BIỂU THỨC SAU CÓ GIÁ TRỊ NGUYÊN
A=(2X+2)/(3X-1)
B=(X+21)/(X^2-3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Với $x$ nguyên, để biểu thức có giá trị nguyên thì $x-1$ là ước của $2$
$\Rightarrow x-1\in\left\{1; -1; 2;-2\right\}$
$\Rightarrow x\in\left\{2; 0; 3; -1\right\}$
b.
$\frac{x-2}{x-1}=\frac{(x-1)-1}{x-1}=1-\frac{1}{x-1}$
Để biểu thức nhận giá trị nguyên thì $\frac{1}{x-1}$ nguyên
$\Rightarrow x-1$ là ước của $1$
$\Rightarrow x-1\in\left\{1; -1\right\}$
$\Rightarrow x\in\left\{2; 0\right\}$
ta thấy rằng 5 phải chia hết cho a tức là
a(U)5=1,-1;5,-5
vậy a 1,-1,5,-5 thì x có giá trị nguyên
a:
ĐKXĐ: x<>-1/2
Để \(\dfrac{2x^3+x^2+2x+2}{2x+1}\in Z\) thì
\(2x^3+x^2+2x+1+1⋮2x+1\)
=>\(2x+1\inƯ\left(1\right)\)
=>2x+1 thuộc {1;-1}
=>x thuộc {0;-1}
b:
ĐKXĐ: x<>1/3
\(\dfrac{3x^3-7x^2+11x-1}{3x-1}\in Z\)
=>3x^3-x^2-6x^2+2x+9x-3+2 chia hết cho 3x-1
=>2 chia hết cho 3x-1
=>3x-1 thuộc {1;-1;2;-2}
=>x thuộc {2/3;0;1;-1/3}
mà x nguyên
nên x thuộc {0;1}
c:
ĐKXĐ: x<>2
\(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\in Z\)
=>\(\left(x^2-4\right)\left(x^2+4\right)⋮\left(x-2\right)^2\left(x^2+4\right)\)
=>\(x+2⋮x-2\)
=>x-2+4 chia hết cho x-2
=>4 chia hết cho x-2
=>x-2 thuộc {1;-1;2;-2;4;-4}
=>x thuộc {3;1;4;0;6;-2}
a: ĐKXĐ: x>0
Để A là số nguyên thì \(7⋮\sqrt{x}\)
=>\(\sqrt{x}\in\left\{1;7\right\}\)
=>\(x\in\left\{1;49\right\}\)
b: ĐKXĐ: x>1
Để B là số nguyên thì \(3⋮\sqrt{x-1}\)
=>\(\sqrt{x-1}\in\left\{1;3\right\}\)
=>\(x-1\in\left\{1;9\right\}\)
=>\(x\in\left\{2;10\right\}\)
c: ĐKXĐ: x>3
Để C là số nguyên thì \(2⋮\sqrt{x-3}\)
=>\(\sqrt{x-3}\in\left\{1;2\right\}\)
=>\(x-3\in\left\{1;4\right\}\)
=>\(x\in\left\{4;7\right\}\)
a: Để C là số nguyên thì \(3x^3+6x^2+3x+x^2+2x+1-2⋮x^2+2x+1\)
=>\(x^2+2x+1\in\left\{1;-1;2;-2\right\}\)
=>(x+1)^2=1 hoặc (x+1)^2=2
=>\(x\in\left\{0;-2;\sqrt{2}-1;-\sqrt{2}-1\right\}\)
b: Để D là số nguyên thì \(x^4+x^2+x^3+x-29⋮x^2+1\)
=>\(x^2+1\in\left\{1;-1;29;-29\right\}\)
=>x^2+1=1 hoặc x^2+1=29
=>\(x\in\left\{0;2\sqrt{7};-2\sqrt{7}\right\}\)
ĐKXĐ: \(x\ne1\)
Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)
\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)
\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)
\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)
Để B nguyên thì \(3⋮\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)
mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)
\(\Leftrightarrow x-1\in\left\{1;9\right\}\)
hay \(x\in\left\{2;10\right\}\) (nhận)
Vậy: \(x\in\left\{2;10\right\}\)