K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

cau viet so mu kieu gi vay

20 tháng 9 2018

s= 1 -3 +3- 3-...+32014-32015

 =(1-3+32)-(33-34+35)-...-(32013-32014+32015)

 =(1-3+32)-33(1-3+32)-...-32013(1-3+32)

=7-33 *7-...-32013*7

=7*(1-33-...-32013)

có 7 chia hết cho 7,(1-33-...-32013)  là số nguyên

=> s chia hết cho 7 (đpcm)

18 tháng 10 2018

\(S=1+2+2^2+2^3+...+2^{99}\)

   \(=\left(1+2+2^2+2^3\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}\right)\)

   \(=\left(1+2+4+8\right)+...+2^{96}.\left(1+2+2^2+2^3\right)\)

   \(=15+...+2^{96}.15\)

   \(=15.\left(1+...+2^{96}\right)⋮15\)

\(\Rightarrow\) \(S⋮15\)

21 tháng 10 2015

Gọi 3 stn liên tiếp là: a;a+1;a+2

Ta có : a+a+1+a+2=3a+(1+2)=3a+3

Mà 3a chia hết cho 3 ; 3 chia hết cho 3 

Nên 3a+3 chia hết cho 3

Vậy tổng 3 stn liên tiếp chia hết cho 3

21 tháng 10 2015

Gọi 3 số tự nhiên liên tiếp đó lần lượt là a;a+1;a+2 

ta có :a+(a+1)+(a+2)=3a +3=3.(a+1) chia hết cho3 

Vậy 3 số tự nhiên liên tiếp chia hết cho 3

14 tháng 6 2016

Theo đề bài , ta có :

a = 3q + 1 ( q \(\in\) N )

b = 3q + 2 ( p \(\in\) N )

Do đó : a + b = ( 3q + 1 ) + ( 3p + 2 )

                        = 3q + 3p + 3

                        = 3( q + p + 1 ) \(\vdots\) 3 vì 3 \(\vdots\) 3

Vậy tổng a + b  \(\vdots\) 3

12 tháng 11 2015

78874

                    t.gifi.gifc.gifk.gif                                                                                            n.gifh.gifa.gif

12 tháng 11 2015

sai rồi chứng tỏ mà

17 tháng 12 2021

Các bạn giúp mình nhé

18 tháng 12 2021

\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)

19 tháng 12 2021

\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)

\(=13\left(1+...+3^7\right)⋮13\)

23 tháng 12 2021

\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)

\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)

\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)

\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)

\(S=4\left(3^2+3^4+3^6+3^8\right)\)

\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)