K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

help help help

2 tháng 1 2017

/,lkyhujy

1 tháng 12 2021

a,ĐKXĐ:\(x\ge2\)

\(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\\ \Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-\dfrac{\sqrt{x-2}}{2}=26\\ \Leftrightarrow8\sqrt{x-2}+6\sqrt{x-2}-\sqrt{x-2}=52\\ \Leftrightarrow13\sqrt{x-2}=52\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)

b,ĐKXĐ:\(x\in R\)

\(3x+\sqrt{4x^2-8x+4}=1\\ \Leftrightarrow2\sqrt{x^2-2x+1}=1-3x\\ \Leftrightarrow\left|x-1\right|=\dfrac{1-3x}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1-3x}{2}\\x-1=\dfrac{3x-1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-2=1-3x\\2x-2=3x-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

c, ĐKXĐ:\(x\ge0\)

\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)=7\\ \Leftrightarrow2x+\sqrt{x}-4\sqrt{x}-2=7\\ \Leftrightarrow2x-3\sqrt{x}-9=0\\ \Leftrightarrow\left(2x+3\sqrt{x}\right)-\left(6\sqrt{x}+9\right)=0\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+3\right)-3\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\2\sqrt{x}=-3\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=9\left(tm\right)\)

 

NV
6 tháng 8 2020

1/ ĐKXĐ: ...

\(\Leftrightarrow x=2016-2015\sqrt{x}-x\)

\(\Leftrightarrow2x+2015\sqrt{x}-2016=0\)

Đặt \(\sqrt{x}=t\ge0\)

\(\Rightarrow2t^2+2015t-2016=0\)

Nghiệm xấu kinh khủng, bạn tự giải

2. ĐKXĐ: ...

\(x^2+4x+4+4y^2-8y+4=4xy+13\)

\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2y=1\\x-2y=-5< 0\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=2y+1\)

Thay xuống dưới:

\(\sqrt{\frac{\left(x+y\right)\left(x-2y\right)}{x-y}}+\sqrt{x+y}=\frac{2}{\sqrt{\left(x-y\right)\left(x+y\right)}}\)

\(\Leftrightarrow\left(x+y\right)\sqrt{x-2y}+\left(x+y\right)\sqrt{x-y}=2\)

\(\Leftrightarrow3y+1+\left(3y+1\right)\sqrt{y+1}=2\)

\(\Leftrightarrow6y+\left(3y+1\right)\left(\sqrt{y+1}-1\right)=0\)

\(\Leftrightarrow6y+\frac{\left(3y+1\right)y}{\sqrt{y+1}+1}=0\)

\(\Leftrightarrow y\left(6+\frac{3y+1}{\sqrt{y+1}+1}\right)=0\Rightarrow y=0\Rightarrow x=1\)

4 tháng 12 2019

ĐK \(3\ge x\ge1\)

Đặt \(\sqrt{x-1}=a\)

      \(\sqrt{3-x}=b\)

Ta có:

   \(a+b-ab=1\)

  \(a+b-ab-1=0\)

  \(\left(a-ab\right)-\left(1-b\right)=0\)

  \(a\left(1-b\right)-\left(1-b\right)=0\)

  \(\left(a-1\right)\left(1-b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a-1=0\Leftrightarrow a=1\\1-b=0\Leftrightarrow b=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=1\Leftrightarrow x-1=1\\\sqrt{3-x}=1\Leftrightarrow3-x=1\end{cases}}\)

\(\Leftrightarrow x=2\)( thỏa mãn ĐK )

1 tháng 8 2021

a, ĐK: \(x\ge1\)

Đặt \(\sqrt{5x-1}=a;\sqrt{x-1}=b\left(a,b\ge0\right)\)

\(pt\Leftrightarrow\left(a+b\right)\left(\dfrac{a^2+b^2}{2}-ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2=2\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)\left(a-b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=b+2\end{matrix}\right.\)

TH1: \(a=b\Leftrightarrow\sqrt{5x-1}=\sqrt{x-1}\Leftrightarrow x=0\left(l\right)\)

TH2: \(a=b+2\Leftrightarrow\sqrt{5x-1}=\sqrt{x-1}+2\)

\(\Leftrightarrow5x-1=x-1+4+4\sqrt{x-1}\)

\(\Leftrightarrow4x-4-4\sqrt{x-1}=0\)

\(\Leftrightarrow4x-4-4\sqrt{x-1}+1=1\)

\(\Leftrightarrow\left(2\sqrt{x-1}-1\right)^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x-1}-1=1\\2\sqrt{x-1}-1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-1}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

28 tháng 11 2016

Ta có

\(x=\frac{\sqrt{4+2\sqrt{3}}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}-2}\)

\(=\frac{\sqrt{3+2\sqrt{3}+1}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.4.\sqrt{5}-8}-2}\)

\(=\frac{\sqrt{3}+1-\sqrt{3}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)-2}=\frac{1}{5-4-2}=-1\)

Thế vào ta được

\(P=\left(x^2+x+1\right)^{2013}+\left(x^2+x-1\right)^{2013}\)

\(=\left(1-1+1\right)^{2013}+\left(1-1-1\right)^{2013}=1-1=0\)

22 tháng 7 2021

mong mọi người giải giúp em vs gianroigianroi