1/ Chứng minh rằng hai phân số sau tối giản với mọi số tự nhiên n:
a/ \(\frac{n+1}{2n+3}\) b/ \(\frac{2n+3}{4n+8}\)c/ \(\frac{3n+2}{5n+3}\)
2/ Cho phân số A = \(\frac{63}{3n+1}\)(n thuộc N)
a/ Với giá trị nào của n thì A rút gọn được.
b/ Với giá trị nào của n thì A là số tự nhiên.
Bài 1 .
a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :
2n + 3 - 2( n + 1 ) \(⋮\)cho d
\(\Rightarrow\)1 chia hết cho d => d = + , - 1
b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :
4n + 8 - 2( 2n + 3 ) \(⋮\)cho d
\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1
c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).