Tìm tập hợp các giá trị của x biết :
a)(2x-4) (9-3x)>0
b)(3/2x - 4).5/3 >15/6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2x - 3 < 0
=> 2x < 3
=> x < 3/2
b, (2x - 4)(9 - 3x) > 0
th1 :
2x - 4 > 0 và 9 - 3x > 0
=> 2x > 4 và 3x < 9
=> x > 2 và x < 3
th2 : 2x - 4 < 0 và 9 - 3x < 0
=> 2x < 4 và 3x > 9
=> x < 2 và x > 3 (vô lí)
a) 2x-3<0
suy ra 2x<3
suy ra x<3/2
b) (2x-4)(9-3x)>0
TH1: (2x-4)(9-3x)=0
<=> 2x-4=0 <=> 2x=4<=>x=2
<=>9-3x=0<=>3x=9<=>x=3
vậy ...
TH2:lại có 2 th con:
th1:
=>2x-4>0<=>2x>4<=>x>2 suy ra x>3 thì thỏa mãn cả x>2 và x>3
=>9-3x>0<=>3x=9<=>x>3
th2:
=>2x-4<0<=>2x<4<=>x<2 suy ra x<2 thì thỏa mãn x<2 và x<3
=>9-3x<0<=>3x<9<=>x<3
vậy .....
các câu còn lại tương tự
a, \(2x-3< 0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)
b, \(\left(2x-4\right)\left(9-3x\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}2x-4>0\\9-3x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 3\end{cases}\Leftrightarrow2< x< 3}}\)
a. \(2x-3< 0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)
b. \(\left(2x-4\right)\left(9-3x\right)>0\Leftrightarrow18x-6x-36+12x>0\Leftrightarrow24x>36\Leftrightarrow x>\frac{3}{2}\)
c. \(\frac{2}{3}x-\frac{3}{4}>0\Leftrightarrow\frac{2}{3}x>\frac{3}{4}\Leftrightarrow x>\frac{9}{8}\)
d. \(\left(\frac{3}{4}-2x\right)\left(\frac{-3}{5}+\frac{2}{-61}-\frac{17}{51}\right)\le0\)
\(\Leftrightarrow\frac{3}{4}-2x\le0\Leftrightarrow2x\le\frac{3}{4}\Leftrightarrow x\le\frac{3}{8}\)
e. \(\left(\frac{3}{2}x-4\right).\frac{5}{3}>\frac{15}{6}\Leftrightarrow\frac{3}{2}x-4>\frac{3}{2}\Leftrightarrow\frac{3}{2}x>\frac{11}{2}\Leftrightarrow x>\frac{11}{3}\)
a) \(x^2-5x+4=0\)
\(\Leftrightarrow\)\(x^2-x-4x+4=0\)
\(\Leftrightarrow\)\(x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Vậy tổng các giá trị nguyên của x thỏa mãn là:
\(1+4=5\)
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
a) \(\left(x-1\right)\left(x-2\right)>0\)
=> \(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>1\\x>2\end{cases}}\) hoặc \(\hept{\begin{cases}x< 1\\x< 2\end{cases}}\)
=> \(1< x< 2\)
b) 2x - 3 < 0
=> 2x < 3
=> x < 3/2
c) \(\left(2x-4\right)\left(9-3x\right)>0\)
=> 2(x - 2). 3(3 - x) > 0
=> (x - 2)(3 - x) > 0
=> \(\hept{\begin{cases}x-2>0\\3-x>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\3-x< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>2\\x< 3\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x>3\end{cases}}\)
=> 2 < x < 3
a) th1: 2x-4>0 và 9-3x>0 <=> x>2 và x<3 => 2<x<3
th2: 2x-4<0 và 9-3x<0 <=> x<2 và x>3 => loại
=> tập các giá trị: 2<x<3
b) \(\left(\frac{3}{2}x-4\right).\frac{5}{3}>\frac{15}{6}\Leftrightarrow\frac{3}{2}x-4>\frac{3}{2}\Leftrightarrow\frac{3}{2}x>\frac{11}{2}\Leftrightarrow x>\frac{11}{3}\).
nhớ L I K E