K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2015

Ta có : \(\sqrt{17}+\sqrt{26}+1

17 tháng 4 2016

Huỳnh Đức Lê viết sai dấu rồi

26 tháng 10 2016

1/√1 > 1/10
1/√2 > 1/10
1/√3 > 1/10
....................
1/√99 > 1/10
1/√100 = 1/10
Cộng từng vế ta có:
1/√1 + 1/√2 + 1/√3 + ... + 1/√100 >100.1/0 = 10 (Đpcm)

2 tháng 2 2017

\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)

10 tháng 12 2015

\(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

18 tháng 1 2017

ta thấy: \(\sqrt{26}>\sqrt{25}=5\)

\(\sqrt{37}>\sqrt{36}=6\)

=> \(2+\sqrt{26}+\sqrt{37}>2+5+6=13\) (1)

ta lại thấy: \(\sqrt{168}< \sqrt{169}=13\) (2)

từ 1 và 2 => \(2+\sqrt{26}+\sqrt{37}>\sqrt{168}\)

vậy \(2+\sqrt{26}+\sqrt{37}>\sqrt{168}\)

10 tháng 9 2017

Ta có: \(\sqrt{17}\)>\(\sqrt{16}\)=4

\(\sqrt{26}\)>\(\sqrt{25}\)=5

nên \(\sqrt{17}\)+\(\sqrt{16}\)+1>4+5+1

\(\sqrt{17}\)+\(\sqrt{16}\)+1>10=\(\sqrt{100}\)>\(\sqrt{99}\)

Vậy \(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{99}\)

2 tháng 2 2018

Ta có:

\(\sqrt{99}< \sqrt{100}=10\)

\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=10\)

Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

2 tháng 2 2018

ʇɐɥʇ ɥuɐɹ uɐq ɔɐɔ ɐl ƃunp ıɥʇ ʎɐp uǝp ɔonp ɔop uɐq ɔɐɔ ɐl ʇǝıq ɥuıɯ ƃunɥu 'ɔonp ɔop ıoɯ ıɐl ɔonƃu ʎɐox ıɐɥd ɐʌ ɔop oɥʞ ɐl ʇɐɹ ıɥʇ ʎɐu ǝɥʇ ʇǝıʌ ɐl ʇǝıq ɥuıɯ

1 tháng 11 2017

√17 + √26 + 1 và √99 
Ta có: √17 > √16 (1) 
√26 > √25 (2) 
Từ (1) và (2) => √17 + √26 + 1 > √16 + √25 + 1 
=> √17 + √26 + 1 > 4 + 5 + 1 
=> √17 + √26 + 1 > 10 
=> √17 + √26 + 1 > √100 
Do √100 > √99 
=> √17 + √26 + 1 > √99 
 

Ta có 

\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}\)(1)

Mà \(\sqrt{99}< \sqrt{100}\)(2)

Từ (1)(2) \(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

P/s tham khảo nha

23 tháng 8 2015

Ghi nhầm 

\(\sqrt{3}+1

13 tháng 10 2018

Ta có  : \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)(1)

             \(\sqrt{99}< \sqrt{100}=10\)(2)

Từ (1) và (2) ta có : \(\sqrt{17}+\sqrt{26}+1>10>\sqrt{99}\)

\(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)