1: Cho A = \(\frac{n+3}{n+1}\) tìm n thuộc Z để A thuộc Z
2: Cho b = \(\frac{3n-5}{n-4}\)tìm n thuộc Z để B thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)
Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do đó :
\(3n+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(0\) | \(\frac{-2}{3}\) | \(\frac{1}{3}\) | \(-1\) | \(1\) | \(\frac{-5}{3}\) |
Lại có \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)
Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời
Đảo câu b lên làm trước câu a nhé.
Để A thuộc Z
=> n-1 chia hết cho n+4
=> n+4-5 chia hết cho n+4
Vì n+4 chia hết cho n+4
=> -5 chia hết cho n+4
=> n+4 thuộc Ư(-5)
n+4 | n |
1 | -3 |
-1 | -5 |
5 | 1 |
-5 | -9 |
KL: n \(\in\){-3; -5; 1; -9}
a, Để A là phân số => n \(\notin\){-3; -5; 1; -9}
Để các p/số là số nguyên thì
a. 8 chia hết cho n + 1
=> n + 1 thuộc Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
=> n thuộc {-9; -5; -3; -2; 0; 1; 3; 7}
b. 3n - 5 chia hết cho n + 4
=> 3n + 12 - 17 chia hết cho n + 4
=> 3.(n + 4) - 17 chia hết cho n + 4
mà 3.(n + 4) chia hết cho n + 4
=> 17 chia hết cho n + 4
=> n + 4 thuộc Ư(17) = {-17; -1; 1; 17}
=> n thuộc {-21; -5; -3; 13}.
\(A=\frac{n+1}{n-2}\\ Athu\text{ộc}Zkhin+1⋮n-2\\ =>n-2+3⋮n-2\\ =>3⋮n-2\)
=>n-2 thuộc Ư(3)={1;3;-1;-3}
=>n thuoc {3;5;1;-1}
b) A có GTLN khi n lớn nhất =>n=5
Câu b không chắc chắn
a,
\(P=\frac{3n-4}{n+2}\) là phân số
<=> n + 2 khác 0
<=> n khác -2
b,
\(P=\frac{3n-4}{n+2}\inℤ\Leftrightarrow3n-4⋮n+2\)
=> 3n + 6 - 10 ⋮ n + 2
=> 3(n + 2) - 10 ⋮ n + 2
3(n + 2) ⋮ n + 2
=> 10 ⋮ n + 2
=> n + 2 thuộc Ư(10) = {-1; 1; -2; 2; -5; 5; -10; 10}
=> n thuộc {-3; -1; -4; 0; -7; 3; -12; 8}
vậy_
Giải :
a) Để P là phần số thì \(n+2\ne2\) \(\Rightarrow n\ne-2\)
b) Ta có : \(\frac{3n-4}{n+2}=\frac{3.\left(n+2\right)-10}{n+2}=3-\frac{10}{n+2}\)
Để P \(\in\)Z thì 10 \(⋮\)n + 2=> n + 2 \(\in\)Ư(10) = {1; -1; 2; -2; 5; -5; 10; -10}
Lập bảng :
n + 2 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | -1 | -3 | 0 | -4 | 3 | -7 | 8 | -12 |
Vậy n \(\in\){-1;-3; 0; -4; 3; -7; 8; -12} thì P \(\in\)Z
a) Để A có giá trị nguyên
suy ra (6n - 1) chia hết cho (3n + 2)
Vì (3n + 2) chia hết cho (3n + 2) suy ra 2(3n + 2) chia hết cho (3n + 2) hay (6n + 4) chia hết cho (3n + 2)
suy ra [(6n - 1) - (6n + 4)] chia hết cho (3n + 2)
(6n - 1 - 6n - 4) chia hết cho (3n + 2)
5 chia hết cho (3n + 2)
hay 3n + 2 thuộc Ư(5). Mà Ư(5) thuộc {1; -1; 5; -5}
Ta có bảng sau:
3n + 2 | 1 | -1 | 5 | -5 |
3n | -1 | -3 | 3 | -7 |
n | -1/3 ko thuộc Z (loại) | -1 | 1 | -7/3 ko thuộc Z (loại) |
Vậy n = 1 hoặc n = -1
b) Ta có: A=6n - 1/3n + 2 = 6n + 4 - 5/3n + 2 = 2(3n + 2) - 5/3n + 2 = 2 - 5/3n + 2
Để A min suy ra 5/3n + 2 max
Vì 5 ko thay đổi suy ra 3n + 2 min và 5/3n + 2 là số âm nhỏ nhất
Suy ra 3n + 2 là số âm lớn nhất nên 3n + 2 = -1
3n = -1 - 2 = -3
n = -3 : 3 = -1
Vậy min A = -7 tại n = -1
Nhớ k mình đúng nhé!!!Thanks các bạn nhiều
a)
Để A thuộc Z thì ( dấu " : " là chia hết cho )
n + 1 : n - 2
n - 2 + 3 : n - 2
=> 3 : n - 2 => n - 2 thuộc Ư(3) = { 1; 3; -1; -3 }
Sau đó tìm n là xong
b) Cũng gần tương tự như phần a !
\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)
Để A nhỏ nhất thì \(\frac{3}{n-3}\)nhỏ nhất
mà n nguyên ( theo đề bài )
=> 3 : n - 3
Ta có bảng :
n - 3 | 1 | -1 | 3 | -3 |
n | 4 | 2 | 6 | 0 |
Lần lượt thay n vào A thì ta thấy A nhỏ nhất <=> n = 0
A nguyên <=> 3 ⋮ n - 2
=> n - 2 thuộc Ư(3)
=> n - 2 thuộc {-1;1;-3;3}
=> n thuộc {1;3;-1;5}
B nguyên <=> n ⋮ n + 1
=> n + 1 - 1 ⋮ n + 1
=> 1 ⋮ n + 1
=> như a
ĐK : \(n\ne2\)
\(A=\frac{3}{n-2}\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n - 2 | 1 | -1 | 3 | -3 |
n | 3 | 1 | 5 | -1 |
ĐK : \(n\ne-1\)
\(B=\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 1 | 1 | -1 |
n | 0 | -2 |
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}