K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

bạn ghi đề sai rồi

25 tháng 12 2016

Tử mẫu không rõ rằng => lạc đề

15 tháng 10 2020

a)\(\log_{\frac{2}{x}}x^2-14\log_{16x}x^3+40\log_{4x}\sqrt{x}=0\)ĐKXĐ: x>0

\(\Leftrightarrow2\log_{\frac{2}{x}}x-42\log_{16x}+20\log_{4x}\sqrt{x}=0\)

\(\Leftrightarrow\frac{2}{\log_x\frac{2}{x}}-\frac{42}{\log_x16x}+\frac{20}{\log_x4x}=0\)

\(\Leftrightarrow\frac{2}{\log_x2-1}-\frac{42}{4\log_x2+1}+\frac{20}{2\log_x+1}=0\)

Đặt \(\log_x2=a\left(a\in R\right)\)

Thay vào pt:\(\frac{2}{a-1}-\frac{42}{4a+1}+\frac{20}{2a+1}=0\)

\(\Leftrightarrow2a^2-a+4=0\)(pt này vô nghiệm)

Vậy pt đã cho vô nghiệm

15 tháng 10 2020

cái đó phải là \(-42\log_{16x}x\) nhé bạn

12 tháng 7 2018

Tìm GTNN của biểu thức :

\(x^2+2x+4\)

Đặt A = \(x^2+2x+4\)

\(\Leftrightarrow A=\left(x^2+2.x.1+1\right)+3\)

\(\Leftrightarrow A=\left(x+1\right)^2+3\)

Ta luôn có : \(\left(x+1\right)^2\ge0\forall x\)

Suy ra : \(\left(x+1\right)^2+3\ge3\forall x\)

Hay A\(\ge3\) với mọi x

Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)

Nên : \(A_{min}=3khix=-1\)

18 tháng 1 2017

a/ \(A=\frac{2x^3-6x^2+x-8}{x-3}=2x^2+1-\frac{5}{x-3}\)

Từ đây ta thấy A nguyên khi x - 3 là ước nguyên của 5 hay

\(\left(x-3\right)=\left(-5,-1,1,5\right)\)

\(\Rightarrow x=\left(-2,2,4,8\right)\)

b/ \(B=\frac{x^4-16}{x^4-4x^3+8x^2-16x+16}=\frac{\left(x^2+4\right)\left(x-2\right)\left(x+2\right)}{\left(x^2+4\right)\left(x-2\right)^2}\)

\(=\frac{x+2}{x-2}=1+\frac{4}{x-2}\)

Để B nguyên thì x - 2 phải là ước nguyên của 4 hay

\(\left(x-2\right)=\left(-4,-2,-1,1,2,4\right)\)

\(\Rightarrow x=\left(-2,0,1,3,4,6\right)\)