cho M =
cho M =\(\frac{4x^6-16x^{ }+16x^2}{x^8+28x^4+16}\)và\(\frac{2x^3-14^{ }+42}{x^4+2x^2+2x^2-4x+149}=\frac{42}{145}\)
Tính M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\log_{\frac{2}{x}}x^2-14\log_{16x}x^3+40\log_{4x}\sqrt{x}=0\)ĐKXĐ: x>0
\(\Leftrightarrow2\log_{\frac{2}{x}}x-42\log_{16x}+20\log_{4x}\sqrt{x}=0\)
\(\Leftrightarrow\frac{2}{\log_x\frac{2}{x}}-\frac{42}{\log_x16x}+\frac{20}{\log_x4x}=0\)
\(\Leftrightarrow\frac{2}{\log_x2-1}-\frac{42}{4\log_x2+1}+\frac{20}{2\log_x+1}=0\)
Đặt \(\log_x2=a\left(a\in R\right)\)
Thay vào pt:\(\frac{2}{a-1}-\frac{42}{4a+1}+\frac{20}{2a+1}=0\)
\(\Leftrightarrow2a^2-a+4=0\)(pt này vô nghiệm)
Vậy pt đã cho vô nghiệm
Tìm GTNN của biểu thức :
\(x^2+2x+4\)
Đặt A = \(x^2+2x+4\)
\(\Leftrightarrow A=\left(x^2+2.x.1+1\right)+3\)
\(\Leftrightarrow A=\left(x+1\right)^2+3\)
Ta luôn có : \(\left(x+1\right)^2\ge0\forall x\)
Suy ra : \(\left(x+1\right)^2+3\ge3\forall x\)
Hay A\(\ge3\) với mọi x
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Nên : \(A_{min}=3khix=-1\)
a/ \(A=\frac{2x^3-6x^2+x-8}{x-3}=2x^2+1-\frac{5}{x-3}\)
Từ đây ta thấy A nguyên khi x - 3 là ước nguyên của 5 hay
\(\left(x-3\right)=\left(-5,-1,1,5\right)\)
\(\Rightarrow x=\left(-2,2,4,8\right)\)
b/ \(B=\frac{x^4-16}{x^4-4x^3+8x^2-16x+16}=\frac{\left(x^2+4\right)\left(x-2\right)\left(x+2\right)}{\left(x^2+4\right)\left(x-2\right)^2}\)
\(=\frac{x+2}{x-2}=1+\frac{4}{x-2}\)
Để B nguyên thì x - 2 phải là ước nguyên của 4 hay
\(\left(x-2\right)=\left(-4,-2,-1,1,2,4\right)\)
\(\Rightarrow x=\left(-2,0,1,3,4,6\right)\)
bạn ghi đề sai rồi