Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH\(\sim\)ΔCBA(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)(đpcm)
Có gấp thế nào đi nữa thì phải đủ dữ kiện đề tụi tớ mới giúp được cậu nhé :))
a)Xét tam giác ABC vuông tại A(gt),có:
AB^2+AC^2=BC^2(Đl pytago)
Thay số:36+64=BC^2
=>BC= căn 100=10cm
Xét tam giác ABC có BD là phân giác góc ABC(gt),có:
AB/AC=AD/DC(Tính chất đường phân giác trong tam giác)
<=>AB/AB+AC=AD/AD+DC(Tính chất tỉ lệ thức)
Thay số:6/16=AD/8
<=>16AD=48
<=>AD=3cm
Vì D thuộc AC(gt)
=>AD+DC=AC
Thay số:3+DC=8
<=>DC=5cm
b) Xét tam giác ABC vuông tại A(gt),có:
SABC=(AB.AC)/2=24cm^2
Mà SABC=(AH.BC)/2
=>(AH.10)/2=24
<=>AH=24.2÷10=4,8cm
Xét tam giác ABC đồng dạng tam giác HAC có:
+Góc C chung
+Góc AHC=góc BAC=90 độ
=>tam giác ABC đồng dạng tam giác HAC(g.g)
=> AH/AB=CH/AC(Cặp cạnh tương ứng)
Thay số : 4,8/6=CH/8
=>CH=4,8.8÷6=6,4cm
c)
b) xét ∆ABC có AD là đường phân giác của góc A
=>BD/AB=DC/AC ( tính chất)
Áp dụng tính chất dãy tỉ số bằng nhau , được :
BD/AB=DC/AC=BD/6=DC/8=(BD+DC)/(6+8)=BD/14=10/14=5/7
==>BD=6×5:7≈4,3
==>DC=10-4,3≈5,7
a,Áp dụng định lý Pi-ta-go vào tam giác ABC => tam giác ABC vuông tại A=> AH vuông góc vs BC
=> tam giác ABC đồng dạng vs tam giác HAC ( g.c.g)
b, Vì tam giác ABC vuông tại A nên ta có hệ thức: AC2=BC . HC => đpcm
c, có AD là tia phân giác của tam giác ABC => BD=CD=BC/2= 5cm
a: ΔACB vuông tại A co AH vuông góc BC
nên AB^2=BH*BC
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=16/8=2
=>AD=6cm
hình bạn tự vẽ
a) Vì ΔABC vuông tại A, áp dụng định lí Pythagoras ta có :
BC2 = AB2 + AC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8cm\)
Vì BD là phân giác của ^ABC nên theo tính chất đường phân giác trong tam giác ta có : AD/AB = CD/BC
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{AD}{AB}=\frac{CD}{BC}=\frac{AD+CD}{AB+BC}=\frac{AC}{AB+BC}=\frac{8}{16}=\frac{1}{2}\)
=> \(\hept{\begin{cases}\frac{AD}{AB}=\frac{1}{2}\\\frac{CD}{BC}=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}AD=\frac{1}{2}AB=3cm\\CD=\frac{1}{2}BC=5cm\end{cases}}\)
b) Xét ΔBHA và ΔBAC có :
^B chung
^H = ^A = 900
=> ΔBHA ~ ΔBAC (g.g)
=> BH/BA = HA/AC = AB/BC
=> AB2 = BH.BC ( đpcm )
=> BH = AB2/BC = 36/10 = 3,6cm
=> HC = BC - BH = 10 - 3,6 = 6,4cm
c) Xét ΔBHI và ΔBAD có :
^H = ^A = 900
^HBI = ^ABD ( BD là phân giác của ^B )
=> ΔBHI ~ ΔBAD (g.g)
=> BH/BA = HI/AD = BI/BD
=> HI = AD.BH/AB
Vì ΔAHB vuông tại H, áp dụng định lí Pythagoras ta có :
AB2 = BH2 + AH2
=> \(AH=\sqrt{AB^2-BH^2}=\sqrt{6^2-3,6^2}=4,8cm\)
=> HI = AD.BH/AB = 3.3,6/6 = 1,8cm
=> IH.DC = 1,8 . 5 = 9cm ; AD2 = 32 = 9cm
=> IH.DC = AD2 (đpcm)
:)