tính giá trị nhỏ nhất của biểu thức x^2-x+2009
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik nghĩ là............
câu 1 ~ 2011
câu 2 ~ -4
Sai thì cho mik xin lũi nhó
Từ đề bài, ta suy ra:
\(x^2-x+2009\)
\(=\left(x^2-x+\frac{1}{4}\right)+2008,75\)
\(=\left(x-\frac{1}{2}\right)^2+2008,75\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)nên GTNN của biểu thức là 2008,75
\(x^2-x+2019=x^2-x+\frac{1}{4}+\frac{8075}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{8075}{4}\ge\frac{8075}{4}\)
Dấu "=" khi \(x=\frac{1}{2}\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2009\right|+\left|x-1\right|=\left|x-2009\right|+\left|1-x\right|\)
\(\ge\left|x-2009+1-x\right|=2008\)
Dấu "=" khi \(1\le x\le2009\)
Vậy \(Min_A=2008\) khi \(1\le x\le2009\)
A = 2009 - 1005 : (999 - x)
Để A nhỏ nhất
=> 1005 : (999 - x) lớn nhất
=> 999 - x nhỏ nhất
Mà 999 - x khác 0 (vì là số chia)
=> 999 - x = 1
=> x = 998
Khi đó A = 2009 - 1005 : (999 - 998)
= 2009 - 1005 : 1
= 1004
KL: Amin = 1004 <=> x = 998
Tìm GTNN của \(\left|2009^{2007}x\right|+2010\)
Ta có: \(\left|2009^{2007}x\right|\ge0\)
Hiển nhiên \(\left|2009^{2007}x\right|+2010\ge2010\)
Vậy GTNN của \(\left|2009^{2007}x\right|+2010\) là 10
Khi và chỉ khi \(2009^{2007}x=0\Rightarrow x=0\)