(x-1)^1000+(x+1)^1000=1 . tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+100=1000\)
\(x=1000-100\)
\(x=900\)
\(x+1000=10000\)
\(x=10000-1000\)
\(x=9000\)
\(\frac{1}{3}+\frac{1}{6}=\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{499}{1000}\)
\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{499}{1000}\)
\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{499}{1000}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{499}{1000}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{499}{1000}\)
\(2\left(\frac{1}{2}-\frac{1}{x-1}\right)=\frac{499}{1000}\)
\(\frac{1}{2}-\frac{1}{x-1}=\frac{499}{2000}\)
\(\frac{2000\left(x-1\right)}{2\left(x-1\right)2000}-\frac{2.2000}{\left(x-1\right)2.2000}=\frac{499.2\left(x-1\right)}{2000.2\left(x-1\right)}\)
Khử mẫu
\(2000x-2000-4000=998x-998\)
\(2000x-6000=998x-998\)
\(1002x-5002=0\)
\(1002x=5002\Leftrightarrow x=\frac{2501}{501}\)
[(x+1000):20.2]-1=99
=>(x+1000):10=99+1
=>x+1000=100.10
=>x=1000-1000
=>x=0
vậy x=0
(x+1000) : 20 x 2 = 100
=> (x+1000) : 20 = 50
=> x+1000 = 1000
=> x = 0