Tìm giá trị nhỏ nhất của biểu thức
A=\(2014\sqrt{x}+2015\sqrt{1-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}=\sqrt{2}\)
\(A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
\(y=4x^2+\dfrac{9}{x^2}-3\ge2\sqrt{\dfrac{36x^2}{x^2}}-3=9\)
\(y_{min}=9\) khi \(x^2=\dfrac{3}{2}\)
\(P=\dfrac{x-1}{4}+\dfrac{1}{x-1}+\dfrac{1}{4}\ge2\sqrt{\dfrac{x-1}{4\left(x-1\right)}}+\dfrac{1}{4}=\dfrac{5}{4}\)
\(P_{min}=\dfrac{5}{4}\) khi \(x=\dfrac{3}{2}\)
\(A=x-2\sqrt{3-x}\\ =-\left(3-x-2\sqrt{3-x}+1\right)+4\\ =-\left(\sqrt{3-x}-1\right)^2+4\le4\)
Dấu \("="\Leftrightarrow\sqrt{3-x}-1=0\Leftrightarrow3-x=1\Leftrightarrow x=2\)
a) Pt \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=5\Leftrightarrow\left|x-2\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
Vậy...
b)Đk: \(x\ge-1\)
Pt \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}\)
\(\Leftrightarrow4\sqrt{x+1}=16\)\(\Leftrightarrow x+1=16\)\(\Leftrightarrow x=15\) (tm)
Vậy...
\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (a>0)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-\left(2\sqrt{a}+1\right)+1=a-\sqrt{a}\)
b) \(A=a-\sqrt{a}=a-2.\dfrac{1}{2}\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\left(tmđk\right)\)
Vậy \(A_{min}=-\dfrac{1}{4}\)
a) \(\sqrt{x^2-4x+4}=5\Rightarrow\sqrt{\left(x-2\right)^2}=5\Rightarrow\left|x-2\right|=5\)
\(\Rightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
b) \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
\(\Rightarrow\sqrt{16\left(x+1\right)}-3\sqrt{x+1}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Rightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Rightarrow4\sqrt{x+1}=16\Rightarrow\sqrt{x+1}=4\Rightarrow x=15\)
a) \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)
b) Ta có: \(a-\sqrt{a}=\left(\sqrt{a}\right)^2-2.\sqrt{a}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
\(=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(\Rightarrow A_{min}=-\dfrac{1}{4}\) khi \(a=\dfrac{1}{4}\)
\(P\left(x\right)=\frac{2012x+2013\sqrt{1-x^2}+2014}{\sqrt{1-x^2}}=\frac{2012x+2014}{\sqrt{1-x^2}}+\frac{2013\sqrt{1-x^2}}{\sqrt{1-x^2}}\)
\(=\frac{2012x+2014}{\sqrt{1-x^2}}+2013=2012+\frac{2012\left(1+x\right)+1-x}{\sqrt{1-x^2}}\)
Áp dụng BĐT AM-GM ta có:
\(P\left(x\right)\ge2012+\frac{2\sqrt{2012\left(1+x\right)\left(1-x\right)}}{\sqrt{1-x^2}}=2012+2\sqrt{2012}\)
=\(2013\) \(+\frac{2014+2012x}{\sqrt{1-x^2}}\) =\(\frac{2013\left(1+x\right)+1-x}{\sqrt{1-x^2}}\) \(\ge2013+\frac{2\sqrt{2013\left(1+x\right)\left(1-x\right)}}{\sqrt{1-x^2}}=2013+2\sqrt{2013}\)
dau = xay ra khi \(2013\left(1+x\right)=1-x\)
\(\Leftrightarrow x=-\frac{1001}{1002}\)
min p(x) =\(2013+2\sqrt{2013}\Leftrightarrow x=-\frac{1001}{1002}\)
ĐK: \(\left\{{}\begin{matrix}x-2015\ge0\\2017-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2015\\x\le2017\end{matrix}\right.\Leftrightarrow2015\le x\le2017\)
`=> A_(min) <=> x_(min) = 2015 => A_(min) = \sqrt2`