Tìm số nguyên tố ab (a > b > 0) sao cho ab - ba là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab - ba = 10a + b - (10b +a) = 9a - 9 b = 9(a - b)= 32 (a - b)
Để ab - ba là số chính phương thì a - b là số chính phương.
Mà a>b>0; 0<b,a ≤ 9 => 0<a-b ≤9.
=> a-b=1; a-b=4; a-b=9
+) a - b = 1 => ab ∈{21; 32; 43; 54; 65; 76; 87; 98}
ab nguyên tố => ab = 43 (thỏa mãn)
+) a - b = 4 => ab ∈{51; 62; 73; 84; 95}
ab nguyên tố => ab= 73 (thỏa mãn)
+) a- b = 9 => ab = 90 (loại)
Vậy ab = 43 hoặc 73.
Vì a,b là chữ số tự nhiên mà a,b là số nguyên tố nên a,b\(\in\){2;3;5;7}
Thay từng trường hợp vào cho đến khi đến chỗ này:
Với a=3;b=2. Ta có: 32-23=9=32 (là số chính phương)
Vậy số nguyên tố a=3; b=2
ab-ba=10a+b-10b-a=9(a-b)
=> 9(a-b) là số chính phương thì a-b=9 hoặc a-b =1
Vì \(a-b\le8\) nên a-b=1
=> a=2; b=1
=> ab=21
Ta có: ab-ba=n2
10a+b-10b-a=n2
(10a-a)-(10b-b)=n2
9a-9b=n2
9(a-b)=n2
mà n2 có thể =32=9
=>a-b =n2, =>a-b thuộc{12;22;32) mà ab nguyên tố
=>a-b=1 =>a=4; b=3
=>a-b=4 =>a=7; b=3
=>a-b=9 mà a;b có 1 chữ số =>loại
Vậy ab thuộc{43;73}
ab - ba =a.10+b-(bx10+a)=9(a-b)=32ab
Vì a-b là số chính phương mà a>b>0
=>a-b=1 hoặc a-b=4
*a=4,b=3 hoặc a=7,b=3
Vậy ab=43 hoặc ab=73
Bài này mình làm rồi :
ab - ba = 10a + b - (10b +a) = 9a - 9 b = 9(a - b)= 32 (a - b)
Để ab - ba là số chính phương thì a - b là số chính phương.
Mà a>b>0; 0<b,a ≤9 => 0<a-b ≤9.
=> a-b=1; a-b=4; a-b=9
+) a - b = 1 => ab ∈{21; 32; 43; 54; 65; 76; 87; 98}
ab nguyên tố => ab = 43 (thỏa mãn)
+) a - b = 4 => ab ∈{51; 62; 73; 84; 95}
ab nguyên tố => ab= 73 (thỏa mãn)
+) a- b = 9 => ab = 90 (loại)
Vậy ab = 43 hoặc 73.
Bài này mình cung làm rồi :
ab - ba = 10a + b - (10b +a) = 9a - 9 b = 9(a - b)= 32 (a - b)
Để ab - ba là số chính phương thì a - b là số chính phương.
Mà a>b>0; 0<b,a ≤9 => 0<a-b≤9.
=> a-b=1; a-b=4; a-b=9
+) a - b = 1 => ab ∈{21; 32; 43; 54; 65; 76; 87; 98}
ab nguyên tố => ab = 43 (thỏa mãn)
+) a - b = 4 => ab ∈{51; 62; 73; 84; 95}
ab nguyên tố => ab= 73 (thỏa mãn)
+) a- b = 9 => ab = 90 (loại)
Vậy ab = 43 hoặc 73.
1)
A= abc + bca + cab = 111a + 111b + 111c = 3 . 37 . ( a +b + c )
số chính phương phải chứa thừa số nguyên tố với số mũ chẵn, do đó a + b + c phải bằng 37k2 ( k \(\in\)N ) . điều này vô lý vì 3 \(\le\)a + b + c \(\le\)37
Vậy A không là số chính phương
ab-ba=a.10+b-(b.10+a)=9(a-b)=32(a-b)
a-b là số chính phương và a>b>0=>a-b=1 hoặc a-b=4
a=4,b=3 hoặc a=7,b=3
ab=43 hoặc ab=73
ab-ba=a*10+b-(b*10+a)=9(a-b)=32(a-b)
a-b là số chình phương và a>b>0 => a-b=1 hoặc a-b=4
a=4,b=3 hoặc a=7,b=3
ab=43 hoặc ab=73
ab - ba = (10a + b) - (10b + a)
= 9a - 9b
= 9(a - b)
= 32(a - b)
Do ab là số chính phương nên a - b là số chính phương
Ta thấy 1 \(\le\)a \(\le\)8 nên a - b \(\in\){ 1 ; 4 }
+) Với a - b = 1
=> ab \(\in\){ 21 ; 32 ; 43 ; 54 ; 65 ; 76 ; 87 ; 98 }
Vì ab là số nguyên tố nên ab = 43
+) Với a - b = 4
=> ab \(\in\){ 51 ; 62 ; 73 ; 84 ; 95 }
Vì ab là số nguyên tố nên ab = 73
Vậy ab \(\in\){ 43 ; 73 }.
ta có ab-ba=a.10+b-b.10-a
ab-ba=9a-9b
ab-ba=9.(a-b)
ab-ba=3232.(a-b)
vì ab-ba là số c/p mà 3232 là số c/p nên a-b là số c/p
mà a;b là c/s nên 2\leqa\leq9
1\leqb\leq8
mà các số có 1c/s nhỏ hơn 8 là số c/p là 1;4
=> a-b=1 hoặc 4
nếu a-b=1 thì ab E {21;32;43;54;65;76;87;98}
trg đó chỉ có 43 là số ngtố. Thử...
nếu a-b=4 thì ab E{51;62;73;84;95}
trong đó 73 là số nguyên tố. Thử...
vậy số ab cần tìm là 73 hoặc 43