So sánh A và B, biết:
A=1+2+2^2+2^3+......+2^2016
B=2^2017-1
Giúp mình với mình đang cần gấp ,cảm ơn nhé!
Chúc các bạn học giỏi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $x=9$ nên $x-9=0$
Ta có:
$F=(x^{2017}-9x^{2016})-(x^{2016}-9x^{2015})+(x^{2015}-9x^{2014})-....-(x^2-9x)+x-10$
$=x^{2016}(x-9)-x^{2015}(x-9)+x^{2014}(x-9)-....-x(x-9)+x-10$
$=x^{2016}.0-x^{2015}.0+x^{2014}.0-...-x.0+x-10$
$=x-10=9-10=-1$
S6=15+17+19+21+...+151+153+155S6=15+17+19+21+...+151+153+155
Số các số hạng là:
(155−15):2+1=71(155−15):2+1=71
Vậy S6=(155+15).712=6035S6=(155+15).712=6035
S7=15+25+35+...+115S7=15+25+35+...+115
Số các số hạng là:
(115−15):10+1=11(115−15):10+1=11
Vậy S7=(115+15).112=715S7=(115+15).112=715
S4=24+25+26+...+125+126S4=24+25+26+...+125+126
Số các số hạng là:
(126−24):1+1=103
a, 444333=111333.4333=111333.64111
333444=111444.3444=111444.81111
suy ra 444333<333444
b,12+22+...+1002=1(2-1)+2(3-1)+...+100(101-1)
=(1.2+2.3+...+100.101)-(1+2+3...+100)
=A-5050
với A=1.2+2.3+...+100.101
3A=1.2.3+2.3.(4-1)+...+100.101.(102-99)
3A=1.2.3+2.3.4+...+100.101.102-(1.2.3+2.3.4+...+99.100.101)
=100.101.102
SUY RA A=100.101.102/3=343400
thay vào ta có:
12+22+...+1002=A-5050=343400-5050=338350
So sánh : 2^33 và 3^22
2^33 = (2^3)^11 = 8^11
3^22 = (3^2)^11 9^11
Vì 8^11 < 9^11
Vậy : 2^33 < 3^22
Ta có : 2\(^{23}\)= .2\(^{20}\) . 2\(^3\) = ( 2\(^4\))\(^5\). 2\(^3\)= 16\(^5\) . 2\(^3\)
3\(^{22}\) = 3\(^{20}\) . 2\(^2\)= ( 3\(^4\))\(^5\).2\(^2\)= 81\(^5\). 2\(^2\)
Vì 16\(^5\)< 81\(^5\)nên 2\(^{23}\)< 3\(^{22}\)
1: so sánh 2016/2017+2017/2018
vì 2016/2017 > 1/2017 >1/2018 =
> 2016/2017+2017/2018 >1/2018+2017/2018=1
vậy .....
Ta có: 290=(29)10=(23.3)10=(23)3.10=83.10
360=(36)10=(33.2)10=(32)3.10=93.10
Vì 83.10 < 93.10
Nên 290< 360
Tham khảo thôi nhé mk cx ko chắc
Ta có:290=(23)30=830
360=(32)30=930
Vì 830<930
nên 290<360
Vậy 290<360