K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2016

A B C D P Q F M

13 tháng 9 2021

\(a,\) Ta có \(\widehat{B_1}=\widehat{B_2}\left(t/c.phân.giác\right);\widehat{B_2}=\widehat{I_1}\left(so.le.trong.do.EI//BC\right)\)

\(\Rightarrow\widehat{B_1}=\widehat{I_1}\Rightarrow\Delta BEI.cân.tại.E\)

Ta có \(\widehat{C_1}=\widehat{C_2}\left(t/c.phân.giác\right);\widehat{C_2}=\widehat{I_2}\left(so.le.trong.do.FI//BC\right)\)

\(\Rightarrow\widehat{C_1}=\widehat{I_1}\Rightarrow\Delta CFI.cân.tại.F\)

\(b,\) Vì \(\Delta BEI.và.\Delta CFI\) cân nên \(\left\{{}\begin{matrix}BE=EI\\CF=FI\end{matrix}\right.\)

\(\Rightarrow BE+CF=EI+FI=EF\)

Các hình thang: BEFC do EF//BC; ADFE do AE//DF; ABCD do giả thiết

13 tháng 9 2021

undefined

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

a: Xét ΔEAD và ΔFCB có

góc A=góc C

AD=CB

góc ADE=góc CBF(góc ADE=1/2*góc ADC=1/2*góc ABC=góc CBF)

Do đó; ΔEAD=ΔFCB

=>AE=CF

b: AE+EB=AB

CF+FD=CD

mà AB=CD và AE=CF

nên EB=FD

Xét tứ giác DEBF có

BE//FD

BE=FD

=>DEBF là hình bình hành

c: ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường(1)

DEBF là hbh

=>DB cắt EF tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AC,BD,EF đồng quy

4 tháng 12 2016
Bài 1
a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
và MN=1/2DC => MN= DE(2)
từ (1)và (2) => MNED là hbh

b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
=> tam giác ADM cân tại M => MDA = DAM
=> DEN= MAD (3)
MN//DE=> MN//AE => AMNE là hình thang (4)
từ (3)và (4) => AMNE là hình thang cân

c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
  
1 tháng 12 2016
  1. Bài 1
    a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
    và MN=1/2DC => MN= DE(2)
    từ (1)và (2) => MNED là hbh

    b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
    Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
    => tam giác ADM cân tại M => MDA = DAM
    => DEN= MAD (3)
    MN//DE=> MN//AE => AMNE là hình thang (4)
    từ (3)và (4) => AMNE là hình thang cân

    c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
    Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
     nhuquynhdat, 17 Tháng mười hai 2013#2 
  2. nhuquynhdat

    nhuquynhdatGuest

     

    bài 2

    a) AB//CD => AB//CE(1)
    Xét tam giác ADE có AH là đg` cao
    lại có E đối xứng với D qua H => H là trung điểm của DE => AH là trung tuyến
    => tam giác ADE cân tại A
    => ADE=AED(goác đáy tam giác cân)
    mặt khác ABCD là hình thang cân => ADC=góc C
    => góc C= AED
    mà 2 góc này ở vị trí đồng vị của AE và BC => AE//BC(2)
    từ (1)và (2) => ABCE là hbh

    b) xét tam giác AHE và tam giác FHD có góc AHE=góc DHF(đối đỉnh)
    DH=HE(gt)
    AE//DF(gt)=> AEH=FDH(SLT)
    =>tam giác AHE=tam giác FHD(gcg) => AH=HF => H là TĐ của AF

    c) Ta có AH=HF(câu b)DH=HE(gt) => ADFE là hbh
    mà AH vg góc với ED=> AF vg góc với ED => ADEF là hình thoi
    lại có tam giác ADE cân tại A (câu a)=> AD=AE => ADEF là hình vg

4 tháng 9 2016

1) AE cắt BD  chứ k //, bn xem lại đầu bài

2) B = 360 - A-D -C = 360 -70-80-60 = 150o

b) mk không bit vẽ hình, bn dựa vào quan hệ các cạnh của tam giác rui lam

3) a) tam giác ABD cân nên góc ADB = ABD

mà ABD = BDC (so le) => ADB = BDC vây BD là phân giác góc D

b) tui nghi bn sai đề vi ABCD là hình thang, đương nhiên A+D =180, Tại sao gt cho lam j hay ng ta cho B+ D=180 mà bn chép sai? tui đoán gt cho B+D =180, bn xem lại, lam hình met lam

25 tháng 8 2019

         A B C D O

Xét tam giác ABC và BAD có :

AB : chung 

\(\widehat{BAD}=\widehat{ABC}\)

AD = BC    

( ABCD là hình thang cân ) 

\(\Rightarrow\Delta ABC=\Delta BAD\)

\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)

\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB

4 tháng 4 2021

a, Xét △DAB và △CBD có:

∠DAB=∠DCB (= 90 độ), AB//DC => ∠ABD=∠BDC (=60 độ) (so le trong)

=> △DAB ∼ △CBD (g.g)

Ta có: ∠ADB=180 độ - 90 độ - 60 độ = 30 độ

mà ∠ADB=∠DCB => ∠DCB=30 độ (1)

Ta có: ∠BDI=∠CDI= \(\dfrac{60độ}{2}\)= 30 độ (2)

Từ (1), (2) ta có: ∠DCB=∠CDI= 30 độ

=> △IDC cân tại I