chứng tỏ 2 góc kề bù có tia phân giác tạo thành góc vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
Hai góc \(\alpha\) và \(\beta\) là 2 góc kề bù => \(\alpha+\beta=180^o\)
=> \(\frac{1}{2}\alpha+\frac{1}{2}\beta=\frac{1}{2}\left(\alpha+\beta\right)\)
mà \(\alpha+\beta\) = 180o
nên \(\frac{1}{2}\alpha+\frac{1}{2}\beta=\frac{1}{2}.180^o=90^o\)
Vậy, góc tạo bởi 2 tia phân giác của 2 góc kề bù là góc vuông
* Viết giả thiết, kết luận:
GT: - Góc xOz và góc yOz là hai góc kề bù
- Ot là tia phân giác của góc xOz
- Ot' là tia phân giác của góc yOz
KL: Góc tot' là 1 góc vuông
* Chứng minh:
Góc xOt = góc tOz = 1/2 . góc xOz (vì Ot là tia phân giác của góc xOz)
Góc yot' = góc t'Oz = 1/2 . góc yOz (vì Ot' là tia phân giác của góc yOz)
Góc xOz + góc yOz = 180 độ (vì 2 góc kề bù)
Vì góc xOz và góc yOz là 2 góc kề bù mà
Ot là tia phân giác xOz
Ot' là tia phân giác yOz
=> Tia Oz nằm giữa hai tia Ot và Ot' nên:
Góc tOt' = góc tOz + góc t'Oz = 1/2 . góc xOz + 1/2 . góc yOz = 1/2 . (góc xOz + góc yOz) = 1/2 . 180 độ = 90 độ
Vậy tOt' là 1 góc vuông.
hình tự vẽ nha
O x y y m n 1 2 2 3 4
Góc xOy + yOz = 180
Có O1 = O2 (Om phân giác) O3 = O4 (On phân giác)
mà O1 + O2 +O3 + O4 = 180 <=> 2.O2+ 2.O3 = 180 <=> O2+O3 = 90 hay góc mOn = 90 => đpcm
Ta có hình vẽ sau
x O y z m n
Gỉa sử góc xOz=120 độ thì tia phân giác Om sẽ chia ra hai góc 60 độ
Góc yOz=60 độ thì tia phân giác On sẽ chia hai góc 30 độ
Cộng hai góc với nhau sẽ có 1 góc 90 độ là 1 góc vuông
Nên tia phân giác của hai góc kề bù luôn vuông góc với nhau
bn vẽ hình từ trái qua phải nhé:vẽ đt :xOy,Oz nằm giữa 2 tia Oy,Ox;Oz là tia pg của góc xOt;Oh là tia pg của tOy
ta có:
góc xOt + tOy = 180(độ)
=>2zOt+2tOh=180(độ)
=>2(zOt+tOh)=180(độ)
=>zOt+tOh=180:2=90
=>tia Oz vuông góc vs tia Oh
=> 2 tia pg của 2 góc kề bù vuông góc vs nhau
Ta có \(A_1=A_2;A_3=A_4\)
Có \(A_1+A_2+A_3+A_4=180\)
\(\Rightarrow2\left(A_2+A_3\right)=180\)
\(\Rightarrow A_2+A_3=90\)
* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180o (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180o
=> 2(góc uOz + góc zOv) = 180o
=> góc uOz + góc zOv = 90o
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc tia Ov
Do đó, 2 góc kề bù có tia phân giác tạo thành góc vuông