Tìm số nguyên n để 2n - 1 chia hết cho n2 + 1. Help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
** Bổ sung điều kiện $n$ là số nguyên.
Lời giải:
$n^2+2n+7\vdots n+1$
$\Rightarrow n(n+1)+(n+1)+6\vdots n+1$
$\Rightarrow 6\vdots n+1$
$\Rightarrow n+1\in\left\{\pm 1; \pm 2; \pm 3; \pm 6\right\}$
$\Rightarrow n\in\left\{0; -2; -3; 1; -4; 2; -7; 5\right\}$
ta có: 5n -3 chia hết cho 2n + 1
=> 2.(5n-3) chia hết cho 2n +1
=> 10n - 6 chia hết cho 2n + 1
10n + 5 - 11 chia hết cho 2n + 1
5. ( 2n + 1) - 11 chia hết cho 2n + 1
mà 5.(2n+1) chia hết cho 2n + 1
=> 11 chia hết cho 2 n+1
\(\Rightarrow2n+1\inƯ_{\left(11\right)}=\left(11;-11;1;-1\right)\)
rùi bn thay giá trị của 2n+1 vào để tìm n nhé!
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
a) Có: \(29⋮n\)
\(\Rightarrow n\inƯ\left(29\right)=\left\{\pm1;\pm29\right\}\)
Vậy \(n\in\left\{\pm1;\pm29\right\}\).
b) Có: \(18⋮n-2\)
\(\Rightarrow n-2\inƯ\left(18\right)=\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)
\(\Rightarrow n\in\left\{3;1;4;0;5;-1;8;-4;11;-7;20;-16\right\}\)
Vậy \(n\in\left\{3;1;4;0;5;-1;8;-4;11;-7;20;-16\right\}\)
c) Có: \(n+3⋮n+1\)
\(\Rightarrow n+1+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3\right\}\)
Vậy \(n\in\left\{0;-2;1;-3\right\}\).
d) Có: \(2n+3⋮2n+1\)
\(\Rightarrow2n+1+2⋮2n+1\)
\(\Rightarrow2⋮2n+1\)
Mà 2n+1 là số nguyên lẻ nên \(2n+1=\pm1\)
\(\Rightarrow n\in\left\{0;-1\right\}\)
Vậy \(n\in\left\{0;-1\right\}.\)
a) 29 chia hết cho
=> n thuộc Ư(29)
Mà Ư(29) = 1 ; 29
Vậy n = 1 ; 29
c)n+3 chia hết cho n+1
= (n+1) + 2 chia hết cho n +1
Bỏ n+1 vì n+1 chia hết cho n+1
Có : 2 chia hết cho n+1
=> n+1 là Ư(2)
Ư(2) = 1 ; 2
=> n = 2-1 ; 1-1
=> n = 1 ; 0
d)2n+3 chia hết cho 2n-1
Bỏ 2 vì 2 chia hết cho 2
Có : n+3 chia hết cho n + 1
(n+1) + 2 chia hết cho n +1
Bỏ n+1 vì n+1 chia hết cho n+1
Có : 2 chia hết cho n+1 => n+1 là Ư(2)
Ư(2) = 1 ; 2
n = 2-1 ; 1-1
n = 1 ; 0
\(2n-1⋮n+1\)
\(\Rightarrow2\left(n+1\right)-3⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n+1=1;-1;3;-3\)
\(\Rightarrow n=0;-2;2;-4\)
Ta có 2n-1=(2n+2)-3=2(n+1)-3
Vì theo bài ra 2n-1 chia hết cho n+1 nên 2(n+1)-3 cũng chia hết cho n+1
Mà 2(n+1) chia hết cho n+1 nên 3 chia hết cho n+1
=>n+1 thuộc Ư(3)
=> Ta xét bảng sau
n+1 | 1 | -1 | 3 | -3 |
n | 0 | -2 | 2 | -4 |
Vậy tìm được n=0;-2;2;-4
nhớ tích đúng cho mình nha chúc bn học tốt
Ta có n-2chia hết cho n-2 =>n+5=[(n-2)+7]=>7chia hết cho n-2(vì n-2 chia hết cho n-2) =>Để 7chia hết cho n-2 thì n-2 e {1,7} =>n-2e{1,7} =>ne{3,9}
a, \(n+5⋮n-2\)
\(n-2+7⋮n-2\)
\(7⋮n-2\)hay \(n-2\inƯ\left(7\right)=\left\{1;7\right\}\)
n - 2 | 1 | 7 |
n | 3 | 9 |
b, \(2n+1⋮n-5\)
\(2\left(n-5\right)+11⋮n-5\)
\(11⋮n-5\)hay \(n-5\inƯ\left(11\right)=\left\{1;11\right\}\)
Lập bảng tương tự, ngại quá -.-