Tìm x, y, z biết x+y/2z = y+z-1/2x = z+x+1/2y=5/x+y+z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{x+y+z}=\frac{x}{2y+2z+1}=\frac{y}{2x+2z+1}=\frac{z}{2x+2y-2}=\frac{x+y+z}{4\left(x+y+z\right)}=\frac{1}{4}\)
\(\Rightarrow\hept{\begin{cases}2y+2z+1=4x\\2x+2z+1=4y\\x+y+z=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{17}{6}\\z=\frac{7}{3}\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5}{x+y+z}=\frac{x+y}{2z}=\frac{y+z-1}{2x}=\frac{z+x+1}{2y}=\frac{x+y+y+z-1+z+x+1}{2z+2x+2y}=1\)
=> x + y + z = 5 : 1 = 5 (1)
x + y = 2z (2)
y + z - 1 = 2x => y + z = 2x + 1(3)
z + x + 1 = 2y => x + z = 2y - 1(4)
Thay (2) vào (1) ta có:
2z + z =5
=> 3z = 5
=> z = 5 : 3 = 1,(6)
Thay (3) vào (1) ta có:
x + 2x + 1 = 5
=> 3x = 5 - 1 = 4
=> x = 4 : 3 = 1,(3)
=> 1,(3) + y + 1,(6) = 5
=> y + 3 = 5
=> y = 5 - 3 = 2
Vậy x = 1,(3) ; y = 2 ; z = 1,(6)
Mình là học sinh lớp 7 nên ko biết đúng ko
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20