Cho a,b,c là các chữ số (a,b khác 0) thỏa mãn a.bcd.abc=abcabc
Khi đó abcd=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a. bcd . abc = abcabc
=> abcabc = abc . (1000 + 1) = abc . 1001
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Kết luận a = 7 ; b = 1 ; c = 4 ; d = 3 hay abcd = 7143
Ta có:
a. bcd . abc = abcabc
=> abcabc = abc . (1000 + 1) = abc . 1001
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Kết luận a = 7 ; b = 1 ; c = 4 ; d = 3 hay abcd = 7143
<=> abcabc = abc . (1000 + 1) = abc . 1001
Ta có a . bcd . abc = abcabc
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Tóm lại a = 7 ; b = 1 ; c = 4 ; d = 3
Vậy abcd = 7143
<=> abcabc = abcx(1000+1) = abc x 1001
ta có: ax bcd x abc = abcabc
<=> a x bcd x abc = abc x 1001
<=> a x bcd = 1001
đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta tìm được a = 7 ( vì 1-> 9 chỉ có 1001 mới chia hết cho 7) => bcd = 143
vậy a = 7 ; b = 1 ; c = 4 ; d = 3
vậy abcd = 7143
Lời giải nè: (lưu ý là bcd ; abc và abcabc có gạch ngang trên đầu để thể hiện số tự nhiên)
Ta có:
a. bcd . abc = abcabc
=> abcabc = abc . (1000 + 1) = abc . 1001
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Kết luận a = 7 ; b = 1 ; c = 4 ; d = 3 hay abcd = 7143
abcd = 7143 (trong Violympic cấp Tỉnh chứ gì, mình làm rồi)