cho \(y=\frac{10^{11}-1}{10^{12}-1}\)
\(B=\frac{10^{10+}1}{10^{11}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}\)
=> \(A< B\)
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Leftrightarrow10A=\frac{10\left(10^{11}-1\right)}{\left(10^{12}-1\right)}=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\left(1\right)\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Leftrightarrow10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=\frac{9}{10^{11}+1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A< B\)
Nếu có 1 phân số a/b < 1 thì a/b < a+n/b+n.
Tương tự ta có: A < (10^11 -1)+11/(10^12 -1)+10
A < 10^11+10/10^12+10
A < 10(10^10+1)/10(10^11+1)
A < 10(10^10+1)/10(10^11+1)
A < 10^10+1/10^11+1
Vậy A < B
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}\) theo công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)
\(A< \frac{10^{11}+10}{10^{12}+10}=\frac{10^{10}\left(10+1\right)}{10^{11}\left(10+1\right)}=\frac{10^{10}}{10^{11}}\)
\(\Rightarrow\frac{10^{10}}{10^{11}}=\frac{10^{10}\cdot10^{12}}{10^{11}\cdot10^{12}}=\frac{10^{22}}{10^{23}}\)
\(\Leftrightarrow A< \frac{10^{10}}{10^{11}}=\frac{10^{11}}{10^{12}}\)
Lại áp dụng công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)
\(A< \frac{10^{10}}{10^{11}}=\frac{10^{11}}{10^{12}}< \frac{10^{11}+1}{10^{12}+1}=B\)
\(\Leftrightarrow A< B\)
Hoặc \(A< \frac{10^{11}-1+2}{10^{12}-1+2}=\frac{10^{12}+1}{10^{12}+1}\)
..... (EZ)
Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)
\(\Rightarrow A< B\)
Ta luôn có nếu a>0; b>0 thì \(\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)
Áp dụng vào bài toán ta thấy 1011-1 > 0 và 1012-1 > 0 nên
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)
Vậy A < B
Xin lỗi bn nhé bài toán phụ phía trên đang còn 1 đk nữa là a<b
để so sánh A và B ta so sánh
\(\frac{10^{11}-1}{10^{12}-1}\)và \(\frac{10^{10}+1}{10^{11}+1}\)
Ta có \(10^{11}-1< 10^{11}+1\)
và \(10^{12}-1>10^{11}+1\)
=> A<B
\(10A=\frac{10^{12}-1-9}{10^{12}-1}=\frac{10^{12}-9}{10^{12}}-1\)
\(10B=\frac{10^{11}+1+9}{10^{11}+1}=\frac{10^{11}+9}{10^{11}}+1\)
ta có: \(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Rightarrow10.A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}\)\(=1-\frac{9}{10^{12}-1}< 1\)
ta có: \(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Rightarrow10.B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}\)\(=1+\frac{9}{10^{11}+1}>1\)
\(\Rightarrow10.A< 10.B\)
\(\Rightarrow A< B\)
ta có: \(A=\frac{10^{11}-1}{10^{12}-1}\Rightarrow10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}.\)
\(B=\frac{10^{11}+1}{10^{12}+1}\Rightarrow10B=\frac{10^{12}+10}{10^{12}+1}=\frac{10^{12}+1+9}{10^{12}+1}=1+\frac{9}{10^{12}+1}\)
\(\Rightarrow1-\frac{9}{10^{12}-1}< 1+\frac{9}{10^{12}+1}\Rightarrow10A< 10B\Rightarrow A< B\)
(Nếu có so sánh thì mih so sánh dùm cầu luôn nhé)
B/A =[(10^10+1)/(10^11+1)]/[(10^11-1)/(10^12-1)]
=[(10^12-1).(10^10+1)]/[(10^11-1).(10^11+1)]
=[(10^22-1)+(10^12-10^10)]/(10^22-1)
=1+(10^12-10^10)/(10^22-1)>1
=> B > A
thien ty tfboys làm đúng rồi bạn ạ