Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1
Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)
10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1
Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)
Từ (1) và (2) => 10A < 10B
=> A < B
Tk mk nha
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\); \(\frac{10^{10}+1}{10^{11}+1}< 1\)
\(\Rightarrow\)\(A,B< 1\)
Ta có:
\(10^{11}-1>10^{10}+1\); \(10^{12}-1>10^{11}+1\)
\(\Rightarrow A>B\)
Vậy A > B
Ta luôn có nếu a>0; b>0 thì \(\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)
Áp dụng vào bài toán ta thấy 1011-1 > 0 và 1012-1 > 0 nên
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)
Vậy A < B
Xin lỗi bn nhé bài toán phụ phía trên đang còn 1 đk nữa là a<b
Có : 10A = 10^15-10/10^15-11 = (10^15-11)+1/10^15-11 = 1 + 1/10^15-11
10B = 10^15+10/10^15+9 = (10^15+9)+1/10^15+9 = 1 + 1/10^15+9
Vì 10^15-11 < 10^15-9 => 1/10^15-11 > 1/10^15+9 => 10A > 10B
=> A < B
k mk nha
(Nếu có so sánh thì mih so sánh dùm cầu luôn nhé)
B/A =[(10^10+1)/(10^11+1)]/[(10^11-1)/(10^12-1)]
=[(10^12-1).(10^10+1)]/[(10^11-1).(10^11+1)]
=[(10^22-1)+(10^12-10^10)]/(10^22-1)
=1+(10^12-10^10)/(10^22-1)>1
=> B > A
Nhân cả hai tử của \(A\)và \(B\)với 2 , ta được :
\(10A=10.\left(\frac{10^{2016}+1}{10^{2017}+1}\right)=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{2^{2017}+1}\)
\(10B=10\left(\frac{10^{2017}+1}{10^{2018}+1}\right)=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}}=1+\frac{9}{10^{2018}+1}\)
Vì \(1=1;9=9\)
\(\Rightarrow\)Ta so sánh mẫu , ta có:
\(10^{2017}< 10^{2018}\)
\(\Rightarrow10^{2017}+1< 10^{2018}+1\)
\(\Rightarrow1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)
\(\Rightarrow10A>10B\)
Hay \(A>B\)
Áp dung công thức \(a>b\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
\(B=\frac{10^{2017}+1}{10^{2016}+1}>\frac{10^{2017}+1+9}{10^{2016}+1+9}=\frac{10^{2017}+10}{10^{2016}+10}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2015}+1\right)}=\frac{10^{2016}+1}{10^{2015}+1}=A\)
\(\Leftrightarrow B>A\)
a) \(A=1-\frac{1}{2008.2009}\) ; \(B=1-\frac{1}{2009.2010}\)
Vì \(\frac{1}{2008.2009}>\frac{1}{2009.2010}\) nên A < B
\(B< \frac{10^{2012}+1+9}{10^{2013}+1+9}=\frac{10^{2012}+10}{10^{2013}+10}=\frac{10\left(10^{2011}+1\right)}{10\left(10^{2012}+1\right)}=\frac{10^{2011}+1}{10^{2012}+1}=A\)
Vậy A > B
Áp dụng bất đẳng thức :
\(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
Ta có :
\(B=\frac{10^{2012}+1}{10^{2013}+1}< \frac{10^{2012}+1+9}{10^{2013}+1+9}=\frac{10^{2012}+10}{10^{2013}+10}=\frac{10\left(10^{2011}+1\right)}{10\left(10^{2012}+1\right)}=\frac{10^{2011}+1}{10^{2012}+1}=A\)
\(\Leftrightarrow B< A\)
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Leftrightarrow10A=\frac{10\left(10^{11}-1\right)}{\left(10^{12}-1\right)}=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\left(1\right)\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Leftrightarrow10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=\frac{9}{10^{11}+1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A< B\)
Nếu có 1 phân số a/b < 1 thì a/b < a+n/b+n.
Tương tự ta có: A < (10^11 -1)+11/(10^12 -1)+10
A < 10^11+10/10^12+10
A < 10(10^10+1)/10(10^11+1)
A < 10(10^10+1)/10(10^11+1)
A < 10^10+1/10^11+1
Vậy A < B