Cho 5x^2+5y^2+8xy-2x+2y+2=0 tính M=(x+y)^2007+(x-2)^2008
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow4x^2+x^2+4y^2+y^2+8xy-2x+2y+1+1=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Thay \(x=1\) và \(y=-1\) vào biểu thức \(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\) ta được:
\(\left[1+\left(-1\right)\right]^{2007}+\left(1-2\right)^{2008}+\left[\left(-1\right)+1\right]^{2009}\)
\(=0^{2007}+\left(-1\right)^{2008}+0^{2009}\)
\(=0+1+0\)
\(=1\)
Vậy giá trị của biểu thức \(M\) tại \(x=1\) và \(y=-1\) là \(1\)
5x^2+5y^2+8xy-2x+2y+2=0
=>(4x^2+8xy+4y^2)+(x^2-2x+1)+(y^2+2y+1)=0
=>(2x+2y)^2+(x-1)^2+(y+1)^2=0
tổng 3 biểu thức không âm = 0 <=> chúng đều = 0
<=>2(x+y)=x-1=y+1=0
=>x=1;y=-1
Thay vào M ........
Đẳng thức: \(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Thay vào \(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\) ta được:
\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}=\left(-1\right)^{2008}=1\)
Ta có:
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow x^2+4x^2+y^2+4y^2+8xy-2x+2y+1+1=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+2y+1\right)+\left(4x^2+8xy+4y^2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(2x+2y\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2=0\)
Mà: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\\4\left(x+y\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\x=-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Thay giá trị x và y vào M ta có:
\(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)
\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}\)
\(M=0^{2007}+\left(-1\right)^{2008}+0^{2009}\)
\(M=\left(-1\right)^{2008}\)
\(M=1\)
Ta có: 5x2 + 5y2 + 8xy - 2x + 2y + 2 = 0
\(\Leftrightarrow\)(4x2 + 8xy + 4y2) + (x2 - 2x + 1) + (y2 + 2y + 1) = 0
\(\Leftrightarrow\)(2x + 2y)2 + (x - 1)2 + (y + 1)2 = 0
\(\Leftrightarrow\)\(\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}\)
Thay x = 1; y = -1; x + y = 0 vào M ta được:
M = 0 + (1 + 2)2008 + ( - 1 + 1)2009
= 0 + 32008 + 0 = 32008
Ta có\(5x^2+5y^2+8xy-2x+2y+2=0\Leftrightarrow4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
<=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
mà \(\hept{\begin{cases}4\left(x+y\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow}4\left(x+y\right)^2+\left(y+1\right)^2+\left(x-1\right)^2\ge0\)
dâu = xảy ra <=>\(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
rồi bạn thay vào và tự tính M nhé !
^_^
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Mà \(\left\{{}\begin{matrix}4\left(x+y\right)^2\ge0\\\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}4\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\)
Ta có: \(M=\left(x+y\right)^{2017}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)
\(=\left(-1\right)^{2008}=1\)
Vậy M = 1
mk cũng đag tìm lời giải bàu này