chung to rang 71 + 72 + 73 + 74 + .......... + 72010 chia het cho 399
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) A = 21 + 22 + 23 + 24 + .............. + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7
=> A \(⋮\)cả 3 và 7
Vây A \(⋮\)cả 3 và 7
b) B = 31 + 32 + 33 + 34 + ............... + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 32 \(⋮\)4
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13
=> B \(⋮\)cả 4 và 13
Vậy B \(⋮\)cả 4 và 13
c) C = 51 + 52 + 53 + 54 + ................... + 52010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 54 \(⋮\)6
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31
=> C \(⋮\)cả 6 và 31
Vậy C \(⋮\)cả 6 và 31
d) D = 71 + 72 + 73 + 74 + ...................... + 72010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 72 \(⋮\)8
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57
=> D \(⋮\)cả 8 và 57
Vậy D \(⋮\)cả 8 và 57
Học tốt!!!
a: \(B=3^1+3^2+...+3^{2010}\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)
\(B=3\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2008}\right)⋮13\)
b: \(C=5^1+5^2+...+5^{2010}\)
\(=5\left(1+5\right)+...+5^{2009}\left(1+5\right)\)
\(=6\left(5+...+5^{2009}\right)⋮6\)
\(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)
\(=31\left(5+...+5^{2008}\right)⋮31\)
c: \(D=7\left(1+7\right)+...+7^{2009}\left(1+7\right)\)
\(=8\left(7+...+7^{2009}\right)⋮8\)
\(D=7\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{2008}\right)⋮57\)
Ta viết 10^28=10000......0
Vì 10^28 chia hết cho 8 ; 8 chia hết cho 8 =>10^28+8 chia hết cho 8
Vì 10^28 có tổng các chữ số là 1 ; 8 có tổng các chữ số là 8 =>10^28+8 sẽ có tổng các chữ số là 9=>10^28+8 chia hết cho 9
Mà các số vừa chia hết cho 9;8 thì chia hết cho 72=>10^28+8 chia hết cho 72
a) Ta co : aaa = a x 111
vì 111 chia hết cho 37 =>a x 111 chia hết cho 37 hay aaa chia hết cho 37
b) Ta có aaaaaa = a x 111111
vi 111111 chia hết cho 37 => a x 111111 chia hết cho 37 hay aaaaaa chia hết cho 37
Dieu phai chung minh
Ta thấy \(10\equiv1\left(mod9\right)\)suy ra \(10^{2017}\equiv1\left(mod9\right)\)
Mà \(8\equiv8\left(mod9\right)\)nên \(10^{2017}+8\equiv0\left(mod9\right)\)
Khi đó \(10^{2017}\)chia hết cho 9 (1)
Ta thấy \(10^{2017}=......000\). Vì 000 chia hết cho 8 nên \(10^{2017}\)chia hết cho 8 mà 8 chia hết cho 8 nên
\(10^{2017}+8\)chia hết cho 8 (2)
Từ (1) và(2) suy ra \(10^{2017}+8\)chia hết cho 72 ( vì ƯCLN(8;9)=1)
Vậy....
để chia hết cho 72=>cần cm số đó chia hết cho 8 và 9 (vì 8.9=72)
10^2017+8=100...0008. Ta thấy tổng các chữ số là 9=>(10^2017+8) chia hết cho 9
có 3 số cuối là 008 chia hết cho 8=>10^2017+8 chia hết cho 8
=>10^2017+8 chia hết cho 72