cho tam giác vuông MNP nối tiếp đường tròn O đường kính NP,đường cao MH đường tròn tâm K đường kính MH cắt MN,MP tại D va E.
a) Tứ giác MDHE là hình gì
b) Các tiếp tuyến tại D và E của đường tròn tâm (K) lần lượt là cắt NP tại Q và R .Chứng minh Q và R lần lượt là trung điểm của NH và PH
c) CM DE vuông góc MO
a) Xét (O) có
ΔNDP nội tiếp đường tròn(N,D,P∈(O))
NP là đường kính của (O)(gt)
Do đó: ΔNDP vuông tại D(Định lí)
⇒ND⊥DP tại D
hay ND⊥MP(đpcm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔNMP vuông tại N có ND là đường cao ứng với cạnh huyền MP, ta được:
MN2=MD⋅MPMN2=MD⋅MP(đpcm)
b) Vì N,E∈(O) và N,O,E không thẳng hàng
nên NE là dây của (O)
Xét (O) có
OM là một phần đường kính
NE là dây(cmt)
OM⊥NE tại H(gt)
Do đó: H là trung điểm của NE(Định lí đường kính vuông góc với dây)(đpcm)