(Ctrl/Cmd+V)
\(\frac{1}{\sqrt{a}-1}+\frac{a\sqrt{a}}{1-\sqrt{a}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:...
\(V=\left(\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{x-1-2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)
\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{x-2\sqrt{x}-3}{\sqrt{x}+1}\right)=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(W=\left(\frac{\sqrt{a}-1}{a+\sqrt{a}+1}-\frac{a-3\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\frac{1}{\sqrt{a}-1}\right).\left(\frac{1-\sqrt{a}}{a+1}\right)\)
\(=\left(\frac{\left(\sqrt{a}-1\right)^2-a+3\sqrt{a}-1-\left(a+\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{1-\sqrt{a}}{a+1}\right)\)
\(=\left(\frac{-\left(a+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{-\left(\sqrt{a}-1\right)}{a+1}\right)=\frac{1}{a+\sqrt{a}+1}\)
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne1\\x\ne0\end{matrix}\right.\)
\(\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right).\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\\ =>\left(\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{a-1}+\frac{4\left(a-1\right)\sqrt{a}}{a-1}\right).\frac{a-1}{\sqrt{a}}\)
=>\(\frac{4\sqrt{a}+4\sqrt{a}\left(a-1\right)}{a-1}.\frac{a-1}{\sqrt{a}}\\ =>\frac{4\sqrt{a}.a}{\sqrt{a}}\\ =>4a\)
b, \(a=\frac{\sqrt{6}}{2+\sqrt{6}}\)
suy ra A=4.a=...
2.
a)
\(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\\ =\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(2+\frac{\sqrt{a}\left(2-\sqrt{a}\right)}{2-\sqrt{a}}\right)\\ =\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)\\ =2^2-\left(\sqrt{a}\right)^2\\ =4-a\)
b)
\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\\ =\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\frac{x}{\sqrt{x}+1}\\ =\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\cdot\frac{x}{\sqrt{x}+1}\\ =\frac{x-1}{\sqrt{x}}\cdot\frac{x}{\sqrt{x}+1}\\ =\sqrt{x}\left(\sqrt{x}-1\right)\\ =x-\sqrt{x}\)
c)
\(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\\ =\left(\frac{1-\sqrt{x^3}}{1-x}+\sqrt{x}\right)\cdot\frac{\left(1-\sqrt{x}\right)^2}{\left(1-x\right)^2}\\ =\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\sqrt{x}\right)\cdot\frac{\left(1-\sqrt{x}\right)^2}{\left[\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\right]^2}\\ =\left(\frac{1+\sqrt{x}+x+\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\right)\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\\ =\frac{2x+2\sqrt{x}+1}{1+\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{2x+2\sqrt{x}+1}{\left(1+\sqrt{x}\right)^3}\)
1. (Ko viết lại đề nha :v)
a)
\(A=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\\ =\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\\ =\left(\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\\ =\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2}{x-1}\)
b) Để A đạt giá trị nguyên thì \(2⋮x-1\Leftrightarrow x-1\inƯ\left(2\right)\)
\(\Leftrightarrow x-1\in\left\{-1;1;-2;2\right\}\\ \Leftrightarrow x\in\left\{0;2;-1;3\right\}\)
Vậy......
Bài 1:
b) Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(=\frac{\sqrt{2\left(4+\sqrt{7}\right)}}{\sqrt{2}}-\frac{\sqrt{2\left(4-\sqrt{7}\right)}}{\sqrt{2}}\)
\(=\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}-\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)
\(=\frac{\sqrt{7+2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}-\frac{\sqrt{7-2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{7}+1\right|}{\sqrt{2}}-\frac{\left|\sqrt{7}-1\right|}{\sqrt{2}}\)
\(=\frac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Bài 2:
a) Ta có: \(\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}\)
\(=\frac{\sqrt{a}\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{a+\sqrt{a}+1}-\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}\)
\(=\sqrt{a}\left(\sqrt{a}-1\right)-\sqrt{a}\left(\sqrt{a}+1\right)\)
\(=a-\sqrt{a}-a-\sqrt{a}\)
\(=-2\sqrt{a}\)
b) Ta có: \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)
\(=\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)
\(=\sqrt{ab}-\sqrt{ab}=0\)
d) Ta có: \(\frac{a+b+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a-b}{\sqrt{a}-\sqrt{b}}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\sqrt{a}+\sqrt{b}-\left(\sqrt{a}+\sqrt{b}\right)\)
=0
Bài 3:
a) ĐKXĐ: x≥0
Ta có: \(\frac{\sqrt{27x}}{\sqrt{3}}=6\)
\(\Leftrightarrow\frac{\sqrt{27}\cdot\sqrt{x}}{\sqrt{3}}=6\)
\(\Leftrightarrow3\cdot\sqrt{x}=6\)
\(\Leftrightarrow\sqrt{x}=\frac{6}{3}=2\)
hay \(x=4\)(thỏa mãn)
Vậy: S={4}
b) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge-1\end{matrix}\right.\Leftrightarrow x\ge0\)
Ta có: \(\sqrt{x+1}=3-\sqrt{x}\)
\(\Leftrightarrow\left(\sqrt{x+1}\right)^2=\left(3-\sqrt{x}\right)^2\)
\(\Leftrightarrow x+1=9-6\sqrt{x}+x\)
\(\Leftrightarrow x+1-9+6\sqrt{x}-x=0\)
\(\Leftrightarrow-8+6\sqrt{x}=0\)
\(\Leftrightarrow6\sqrt{x}=8\)
\(\Leftrightarrow\sqrt{x}=\frac{8}{6}=\frac{4}{3}\)
hay \(x=\frac{16}{9}\)(thỏa mãn)
Vậy: \(S=\left\{\frac{16}{9}\right\}\)
c,Có x=\(\frac{1}{2}\left(\sqrt{\frac{1-a}{a}}-\sqrt{\frac{a}{1-a}}\right)\left(0< a< 1\right)\)
<=> \(x=\frac{1}{2}\left(\frac{\sqrt{1-a}}{\sqrt{a}}-\frac{\sqrt{a}}{\sqrt{1-a}}\right)\) (vì 0<a<1)
<=>\(x=\frac{1}{2}.\frac{\sqrt{1-a}^2-\sqrt{a}^2}{\sqrt{a}.\sqrt{1-a}}=\frac{1}{2}.\frac{1-a-a}{\sqrt{a\left(1-a\right)}}=\frac{1}{2}.\frac{1-2a}{\sqrt{a\left(1-a\right)}}=\frac{1-2a}{2\sqrt{a\left(1-a\right)}}\)(1)
<=> 1+x2=1+\(\frac{1}{4}.\frac{\left(1-2a\right)^2}{a\left(1-a\right)}\)= \(\frac{4a\left(1-a\right)+\left(1-2a\right)^2}{4a\left(1-a\right)}\)
<=> 1+x2=\(\frac{4a-4a^2+1-4a+4a^2}{4a\left(1-a\right)}=\frac{1}{4a\left(1-a\right)}\)>0
<=> \(\sqrt{1+x^2}=\frac{1}{2\sqrt{a\left(1-a\right)}}\) (2)
Thay (1),(2) vào C có:
C= \(\frac{2a.\frac{1}{2\sqrt{a\left(1-a\right)}}}{\frac{1}{2\sqrt{a\left(1-a\right)}}-\frac{1-2a}{2\sqrt{a\left(1-a\right)}}}=\frac{\frac{a}{\sqrt{a\left(1-a\right)}}}{\frac{1-1+2a}{2\sqrt{a\left(1-a\right)}}}=\frac{\frac{a}{\sqrt{a\left(1-a\right)}}}{\frac{2a}{2\sqrt{a\left(1-a\right)}}}=1\)
Vậy C=1