K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

\(\frac{x-3}{8}=\frac{y}{30}=\frac{z+1}{27}=\frac{3x-9}{24}=\frac{2y}{60}=\frac{5z+5}{135}=\frac{3x-9-\left(5z+5\right)+2y}{24-135+60}=\frac{3x-5z+2y-14}{-51}\)

\(=\frac{23-14}{-51}=\frac{9}{-51}=\frac{3}{-17}\)

\(\Rightarrow\hept{\begin{cases}x-3=\frac{8.3}{-17}=-\frac{24}{17}\Rightarrow x=\frac{-24}{17}+3=\frac{27}{17}\\y=\frac{30.3}{-17}=-\frac{90}{17}\\z+1=\frac{27.3}{-17}=-\frac{81}{17}\Rightarrow z=-\frac{81}{17}-1=-\frac{98}{17}\end{cases}}\)

29 tháng 5 2019

https://diendantoanhoc.net/topic/167390-cmr-sum-fracx3y38geq-frac19frac227xyyzzx/ 

bạn tham khảo nhé

4 tháng 12 2016

Đặt \(\frac{x-3}{8}=\frac{y}{30}=\frac{z+1}{27}=k\)

\(\Rightarrow x=8k+3,y=30k,z=27k-1\)

Mà 3x-5z+2y=30

Hay 3(8k+3)-5(27k-1)+2(30k)=30

24k+9-135k+5+60k=30

(-51)k+14=30

(-51)k=16

k=16:(-51)

k=\(\frac{-16}{51}\)

\(\Rightarrow x=\frac{-16}{51}\cdot8+3=\frac{25}{51},y=-\frac{16}{51}\cdot30=\frac{-160}{17},z=-\frac{16}{51}\cdot27-1=-\frac{161}{17}\)

7 tháng 12 2016

Số -51 ở đâu ra?

NV
18 tháng 10 2020

ĐKXĐ: ...

Lấy pt cuối trừ 3 lần pt đầu ta được:

\(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^3+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^3+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^3=\frac{512}{27}\)

Pt (2) tương đương:

\(x+\frac{1}{x}-2+y+\frac{1}{y}-2+z+\frac{1}{z}-2=\frac{64}{9}\)

\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^2=\frac{64}{9}\)

Đặt \(\left(\sqrt{x}-\frac{1}{\sqrt{x}};\sqrt{y}-\frac{1}{\sqrt{y}};\sqrt{z}-\frac{1}{\sqrt{z}}\right)=\left(a;b;c\right)\)

Hệ trở thành:

\(\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\a^2+b^2+c^2=\frac{64}{9}\\a^3+b^3+c^3=\frac{512}{27}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\ab+bc+ca=0\\a^3+b^3+c^3=\frac{512}{27}\end{matrix}\right.\)

Ta có: \(a^3+b^3+c^3-3abc=\frac{512}{27}-3abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=\frac{512}{27}-3abc\)

\(\Leftrightarrow\frac{8}{3}.\left(\frac{64}{9}-0\right)=\frac{512}{27}-3abc\)

\(\Rightarrow abc=0\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\ab+bc+ca=0\\abc=0\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(0;0;\frac{8}{3}\right)\) và hoán vị

Hay \(\left(x;y;z\right)=\left(1;1;9\right)\) và hoán vị

29 tháng 7 2020

1/

\(P=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{2}{xy+yz+xz}+\frac{1}{xy+yx+xz}+\frac{2}{x^2+y^2+z^2}\)\

\(\ge\frac{2}{\frac{\left(x+y+z\right)^2}{3}}+\frac{\left(2\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=14\)

Ta thấy dấu bằng xảy ra khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\\frac{1}{xy+yz+xz}=\frac{\sqrt{2}}{x^2+y^2+z^2}\end{cases}}\) 

Hai điều kiện không thể đồng thời xảy ra nên không tồn tại dấu bằng. Vậy P > 14

29 tháng 7 2020

1) vì x,y,z là các số bất kì, ta có bđt luôn đúng: (x+y+z)2 \(\ge\)3(xy+yz+zx)

vì x+y+z=1 nên suy ra \(\frac{1}{xy+yz+zx}\ge3\)

đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

ta có \(\frac{1}{3\left(xy+yz+zx\right)}+\frac{1}{x^2+y^2+z^2}\ge\frac{4}{\left(x+y+z\right)^3}=4\)

\(\Rightarrow\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{4}{2\left(xy+yz+zx\right)}+\frac{2}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\)\(\ge2\cdot3+2\cdot4=14\)

đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\2\left(xy+yz+zx\right)=x^2+y^2+z^2\end{cases}}\)

hệ này vô nghiệm nên bât không trở thành đẳng thức

vậy bất đẳng thức được chứng minh

2) ta có \(\frac{x^3}{y^3+8}+\frac{y+2}{27}+\frac{y^2-2y+4}{27}\ge\frac{x}{3}\Rightarrow\frac{x^3}{y^3+8}\ge\frac{9x+y-y^2-6}{27}\)

tương tự ta có: \(\frac{y^3}{z^3+8}\ge\frac{9y+z-z^2-6}{27},\frac{z^3}{x^3+8}\ge\frac{9z+x-x^2-6}{27}\)nên

\(VT\ge\frac{10\left(x+y+z\right)-\left(x^2+y^2+z^2\right)-18}{27}=\frac{12-\left(x^2+y^2+z^2\right)}{27}\)mà ta lại có 

\(\frac{12-\left(x^2+y^2+z^2\right)27}{27}=\frac{3+\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{27}=\frac{1}{9}+\frac{2}{27}\left(xy+yz+zx\right)\)

từ đó ta có điều phải chứng minh, đẳng thức xảy ra khi x=y=z=1

4 tháng 8 2016

\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{x}{2}-\frac{4}{2}=\frac{y}{3}-\frac{6}{3}=\frac{z}{4}-\frac{8}{4}=\frac{x}{2}-2=\frac{y}{3}-2=\frac{z}{4}-2\)

\(=>\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{27}{9}=3\)

\(=>\hept{\begin{cases}x=3.2=6\\y=3.3=9\\z=3.4=12\end{cases}}\)

Bạn ko cần phải lo vì hồi hè mik làm bài này nhìu lắm rùi

Chúc bạn học giỏi nha!!!

K cho mik với nhé

4 tháng 8 2016

\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}\)

\(\Rightarrow\frac{x-4+y-6+z-8}{2+3+4}\)

\(\Rightarrow\frac{\left(x+y+z\right)-18}{9}\)

\(\Rightarrow\frac{27-18}{9}=\frac{9}{9}=1\)

\(\Rightarrow\frac{x-4}{2}=1\Rightarrow x=6\)

\(\Rightarrow\frac{y-6}{3}=1\Rightarrow y=9\)

\(\Rightarrow\frac{z-8}{4}\Rightarrow z=12\)

11 tháng 8 2016

Áp dụng tính chất dãy tỉ số bằng nhau: 

\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{\left(x+y+z\right)-\left(4+6+8\right)}{2+3+4}=\frac{27-18}{9}=1\)

\(\Rightarrow x-4=2\Rightarrow x=6\)

\(\Rightarrow y-6=3\Rightarrow y=9\)

\(\Rightarrow z-8=4\Rightarrow z=12\)

11 tháng 8 2016

Ta có : \(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}\) và \(x+y+z=27\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

 \(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{x+y+z-18}{2+3+4}=1\)

\(\Leftrightarrow\frac{x-4}{2}=1\Rightarrow x=6\)

\(\Leftrightarrow\frac{y-6}{3}=1\Rightarrow y=9\)

\(\Leftrightarrow\frac{z-8}{4}=1\Rightarrow z=12\)

Vậy x = 6 ; y = 9 ; z = 12

Bạn ơi nhân chéo là ra luôn dễ lắm
8 tháng 3 2019

làm luông di