Cho (O) và điểm M nằm ngoài đường tròn. Qua M vẽ các tiếp tuyến MA,MB với (O) (A,B là các tiếp điểm). Gọi I là trung điểm của MB, tia AI cắt (O) tại C. Vẽ dây AD song song MB. cmr: M,C,D thẳng hàng
Giúp e với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác MAOB có
\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối
\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: M,A,O,B cùng thuộc một đường tròn(đpcm)
a: Phải vì góc này tạo bởi tiếp tuyến MA và day cung AB
b: Xét ΔMOA vuông tại A có cosMOA=OA/OM=1/2
=>góc MOA=60 độ
sđ cung AB=2*60=120 độ
c: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
=>MH*MO=MA^2
Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC=MH*MO
Bạn xem lại đề giúp mình nha, vì đề ko có dữ kiện nào liên quan tới điểm C,D hết