Cho P= x^2 -xy + 2014x -n 2014y + 2. Tính P nếu x=-2014 và y=2013
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x-2013}+x^3=\sqrt{y-2013}+y^3\)
\(\Leftrightarrow\sqrt{x-2013}-\sqrt{y-2013}+x^3-y^3=0\)
\(\Leftrightarrow\dfrac{x-y}{\sqrt{x-2013}+\sqrt{y-2013}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x-2013}+\sqrt{y-2013}}+\left(x^2+xy+y^2\right)\right)=0\)
\(\Leftrightarrow x=y\)
\(\Rightarrow B=\dfrac{2013x+2014y}{2013y+2014x}=1\)
Ở phần dấu tương đương thứ 3, có cần phải đặt điều kiện x, y khác 2013 không bạn vì nếu x,y =2013 thì mẫu của phân số bằng 0
A= x2015 - 2014x2014 - 2014x2013 - ...- 2014x2 - 2014x + 1
= x2015 - (2015-1)x2014 - (2015-1)x2013 -...- (2015-1)x2 - (2015-1)x + 1
= x2015 - 2015x2014+1 - 2015x2013+1 -...- 2015x2+1 - 2015x+1+1
= x2015 - 2015x2014 - 2015x2013 -...- 2015x2 - 2015x+ (1+1+1+...+1)
Thay x= 2015 vào biểu thức ta có:
=20152015 - 20152015 - 20152014-...- 20153 - 20152+2015
=0 - 2.20152014 -...- 2.20153 - 20152 + 2015
= -2.( 20152014 - ...- 20153) - 20152+2015
Ta có: \(x=2013\Leftrightarrow x+1=2014\)
Thay vào ta được
\(C=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(C=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(C=1\)
Vậy C = 1