cho tam giác ABC vuông tại A ,có AB=3cm AC=4cm BD là phân giác của góc ABC
a; tính DB,DA,BC
b: vẽ AH là đường cao của tam giác ABC .tính AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có
\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)
\(\Leftrightarrow\widehat{B}=37^0\)
b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)
mà BD+CD=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)
Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)
a) Có A là hình chiếu của C trên đoạn A
CB là dường xiên của đoạn AB
Suy ra CB lớn hơn AC
Xét Tam giác ABC có
AB nhỏ hơn AC nhỏ hơn CB
Suy ra góc C nhỏ hơn góc B nhỏ hơn góc A (quan hệ giữa góc và cạnh đới diện)
b)CÓ BI là p/g (gt)
Suuy ra góc DBI = góc ABI
Xét tam giác AIB và tam giác DIB có
IB chung
góc DBI = góc ABI (cmt)
AB = BD (gt)
Suy ra tam giác BAI = tam giác BDI (cgc)
Suy ra góc BAI = góc IDB (2 góc tương ứng)
mà góc BAI = 90 độ (tam giác ABC vuông tại A)
Suy ra góc IDB = 90 độ
Suy ra ID vuông góc với BC (định nghĩa)
Đợi mình nghĩ ra câu C
a. Xét △ABD vuông tại A và △EBD vuông tại E:
\(\widehat{ABD}=\widehat{ABE}\) (BD là tia phân giác \(\widehat{ABC}\))
BD chung
=> △ABC= △EBD (ch-gn)
b.
△ ABC= △ EBD => BA=BE; AD=DE
=> B ∈ đường trung trực của AE (1)
=> D ∈ đường trung trực của AE (2)
Từ (1) và (2) => BD là đường trung trực của AE
c.
Áp dụng định lý Py-ta-go vào △ BED có:
BD2=BE2 + DE2
BD2 = 42 + 32 = 16 + 9
BD2 = 25
=> BD = 5 cm
d.
Xét △EDC có: DC > DE (cạnh huyền > cạnh góc vuông)
Mà DE=AD nên AD < DC
a. áp dụng định lý pytago vào tam giác vuông ABC, ta có:
BC2=AB2+AC2
BC2= 32+42
BC2= 9+16
BC2=25
BC= 5 (cm)
Vì BD là phân giác
=> \(\dfrac{AD}{CD}\)=\(\dfrac{AB}{BC}\)
gọi AD là x, CD là 4-x
=> \(\dfrac{x}{4-x}\)=\(\dfrac{3}{5}\)
5x= 3.(4-x)
5x= 12-3x
5x+3x=12
8x=12
x= 1,5 (cm)
Vậy AD= 1,5 cm
b. Xét tam giác ABC và tam giác HBA:
góc A= góc H= 90o
góc B chung
=> tam giác ABC ~ tam giác HBA
c. Vì tam giác ABC ~ tam giác HBA (cmt)
=> \(\dfrac{AB}{HB}\)=\(\dfrac{BC}{AB}\)
=> AB2=BC.HB
Mình vẫn chưa hiểu cái câu c á bạn. Giải thích giúp mình được không?