Cho S=5+5^2+5^3+...+5^96.Chứng minh S chia hết cho 126
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(S=5+5^2+5^3+...+5^{96}\)
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)
Vì mỗi cặp của đa thức \(S\)có hai hạng tử nên tổng số cặp là: \(\frac{96}{2}=48\)( cặp )
\(\Rightarrow\)Đa thức \(S\)không dư số nào
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)
\(\Leftrightarrow S=5.\left(5^0+5^3\right)+5^2\left(5^0+5^3\right)+5^3.\left(5^0+5^3\right)+...+5^{93}.\left(5^0+5^3\right)\)
\(\Leftrightarrow S=5.126+5^2.126+5^3.126+...+5^{93}.126\)
\(\Leftrightarrow S=\left(5+5^2+5^3+...+5^{93}\right).126⋮126\)
Vậy \(S⋮126\)
\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{93}+5^{96}\right)\)
\(S=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+...+5^{93}.\left(1+5^3\right)\)
\(S=5.125+5^2.125+...+5^{93}.125\)
\(S=125.\left(5+5^2+...+5^{93}\right)⋮125\)
\(S=5+5^2+5^3+...+5^{96}\)(có 96 số, 96 chia hết cho 6)
\(=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+\left(5^{91}+5^{92}+5^{93}+5^{94}+5^{95}+5^{96}\right)\)
\(=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{91}+5^{94}\right)+\left(5^{92}+5^{95}\right)+\left(5^{93}+5^{96}\right)\)
\(=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+...+5^{92}.\left(1+5^3\right)+5^{93}.\left(1+5^3\right)\)
\(=5.126+5^2.126+5^3.126+...5^{91}.126+5^{92}.126+5^{93}.126\)
\(=126.\left(5+5^2+5^3+...+5^{91}+5^{92}+5^{93}\right)\)chia hết cho 126.
Vậy \(S=5+5^2+5^3+...+5^{96}\)chia hết cho 126.
S=5+5^2+5^3+...+5^2004
S=(5+5^4)+(5^2+5^5)+...+(5^2001+5^2004)(có 1007 nhóm)
S=5*(1+5^3)+5^2*(1+5^3)+...+5^2001*(1+5^3)
S=5*126+5^2*126+...+5^2001*126
S=126*(5+5^2+...+5^2001) luôn luôn chia hết cho 126
b) Tổng S có số hạng tử là:
\(\dfrac{\left(96-1\right)}{1}+1\)=96 ( hạng tử)
Vì mỗi hạng tử của tổng S đều có tận cùng là 5 nên: S=\(\overline{A5}.96\)=\(\overline{B0}\)
Vậy chữ số tận cùng của S là 0.
( Có j ko hiểu thì bạn bảo lại mình nha vì mik sợ mình làm khó hiểu)
a) S = 5 + 5 2 + .... + 5 96
5S = 5 2 + 5 3 + ... + 5 97
=> 5S - S = ( 5 2 + 5 3 + ... + 5 97 ) - ( 5 + 5 2 + .... + 5 96 )
=> 4S = 5 97 - 5
=> S = \(\frac{5^{97}-5}{4}\)
b) Ta có ;
S = 5 + 5 2 + .... + 5 96
= ( 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 ) + ..... + ( 5 90 + 5 91 + 5 92 + 5 93 + 5 94 + 5 95 + 5 96 )
= 5 ( 1 + 5 + 5 2 + 5 3 + 5 4 + 5 5 ) + ..... + 5 90 ( 1 + 5 + 5 2 + 5 3 + 5 4 + 5 5 )
= 5 . 3906 + ... + 5 90 . 3906
= ( 5 + ... + 5 90 ) . 3906
= ( 5 + ... + 5 90 ) . 126 . 31 chia hết cho 126 ( Vì 126 chia hết cho 126 )
Vậy S = 5 + 5 2 + .... + 5 96 chia hết cho 126
a) \(S=5+5^2+5^3+5^4+.......+5^{96}\)
\(\Rightarrow5S=5^2+5^3+5^4+5^5+.........+5^{97}\)
\(\Rightarrow5S-S=5^{97}-5\)
\(\Rightarrow4S=5^{97}-5\)\(\Rightarrow S=\frac{5^{97}-5}{4}\)
b) \(S=5+5^2+5^3+5^4+..........+5^{96}\)
\(=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+.....+\left(5^{93}+5^{96}\right)\)
\(=5\left(1+5^3\right)+5^2.\left(1+5^3\right)+5^3.\left(1+5^3\right)+......+5^{93}.\left(1+5^3\right)\)
\(=5\left(1+125\right)+5^2.\left(1+125\right)+5^3.\left(1+125\right)+......+5^{93}.\left(1+5^3\right)\)
\(=5.126+5^2.126+5^3.126+......+5^{93}.126\)
\(=126.\left(5+5^2+5^3+.........+5^{93}\right)⋮126\)( đpcm )
b.(5+5^2+5^3+5^4+5^5+5^6)+......+(5^91+58^92+5^93+5^94+58^95+58^96)
=5(1+5+5^2+563+5^4+5^5)+..........+5^91(1+5+5^2+563+5^4+5^5)
=chia het cho 126 chia het cho 126
suy ra S chia het cho 126
c. Do S là tổng các lũy thừa có cơ số là 5.
Cho nên mỗi lũy thừa đều tận cùng là 5.
Mà S có tất cả 96 số như vậy. Nên chữ số tận cùng của S là 0.
S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)
=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)
chia hết cho 126
Xin lỗi nha bạn , mình viết dấu mũ không được