chứng minh rằng :
2*7n +1 chia hết cho 3 giúp minh mau mk cần gấp lắm :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(2^1+2^2+2^3)+...(2^58+2^59+2^60)(20nhóm)
đật số đầu tiên của mỗi nhóm làm thừa số chungbên trong của mỗi nhóm còn lại 1+2+4=7
đặt 7 lammf thừa số chung bên trg còn (2^1+...+2^58)
Achia hết cho7
câu b làm tương tự nhưng nhóm 4 số
câu c nhóm 4 số nhưng lấy số đầu của mỗi nhóm chia 2 dể làm thừa số chung
Đây là tích 4 số nguyên liên tiếp nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)
Mà 24 chia hết cho 3 và 8 nên n(n+1)(n+2)(n+3) chia hết cho 3 và 8
mình chỉ làm đc ý thứ nhất thui
bạn cần phân tích n^2+7n+22=(n+2)(n+5)+12
xét hiệu n+5-(n+2)=3chia hết cho 3
=>n+5và n+2 có cùng số dư khi chia cho 3
+xét n+5 và n+2 có cùng số dư khác 0:
=>(n+5)(n+2) không chia hết cho 3
12 chia hết cho 3=>(n+2)(n+5)+12 không chia hết cho 3
+xét n+5 và n+2 cùng chia hết cho 3
=>(n+5)(n+2) chia hết cho 9
12 không chia hết cho 9=>(n+5)(n+2)+12 không chia hết cho 9
phần sau làm tương tự tách n^2-5n-49=(n-9)(n+4)-13
a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0 \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}
b) ta có 92n+1+1 = (92)n . 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0 \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}
cho mik mik giải nốt bài 2 cho
Vì a là số nguyên tố > 3 nên a có dạng a = 3k + 1 hoặc a = 3k + 2 \(\left(k\inℕ\right)\)
-Nếu a = 3k + 1 thì \(\left(a-1\right)\cdot\left(a+4\right)=\left(3k+1-1\right)\left(3k+1+4\right)=3k\left(3k+5\right)\)
TH1: k là số chẵn thì \(k\left(3k+5\right)⋮2\Rightarrow3k\left(3k+5\right)⋮6\Rightarrow\left(a-1\right)\left(a+4\right)⋮6\)
TH2: k là số lẻ thì \(3k+5⋮2\Rightarrow k\left(3k+5\right)⋮2\Rightarrow3k\left(3k+5\right)⋮6\Rightarrow\left(a-1\right)\left(a+4\right)⋮6\)
-Nếu a = 3k + 2 thì \(\left(a-1\right)\left(a+4\right)=\left(3k+2-1\right)\left(3k+2+4\right)=\left(3k+1\right)\left(3k+6\right)\)
Chứng minh tương tự như trên ta cũng được \(\left(a-1\right)\left(a+4\right)⋮6\)
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
Gọi n;n+1;n+2;n+3;n+4 là 5 số tự nhiên liên tiếp
\(.\)Nếu n \(⋮\)5 \(\Rightarrow\)đpcm
\(.\)Nếu n không chia hết cho 5 => n = 5k + 1 hoặc n = 5k + 2 hoặc n = 5k + 3 hoặc n = 5k + 4
- Với n = 5k + 1 => n + 4 = 5k + 5 \(⋮\)5
- Với n = 5k + 2 => n + 3 = 5k + 5 \(⋮\)5
- Với n = 5k + 3 => n + 2 = 5k + 5 \(⋮\)5
- Với n = 5k + 4 => n + 1 = 5k + 5 \(⋮\)5
Vậy trong 5 số tự nhiên liên tiếp có một số luôn chia hết cho 5
Gọi 5 số tự nhiên liên tiếp là a, a + 1, a+2, a+3,a+4
Ta có:
a+a+1+a+2+a+3+a+4
= ( a+a+a+a+a) + ( 1 + 2 + 3 + 4 )
= 5.a+10
= 5. ( a + 2 ) chia hết cho 5
Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5
1a. ( 210 + 1 )10 chia hết cho 125 = ( 1024 + 1 ) 10 chia hết cho 125 = 102510 chia hết cho 125
Ta có : 1025 : 125 = 8.2 nên 102510 không thể chia hết cho 125 vì a chia hết cho b thì a nhân x chia hết cho b
1b. 102018 + 53 chia hết cho 9 = ( 1 + 0 + 0 + 0 + ... ) + 125 = 1 + 8 = 9 nên 102018 + 53 chia hết cho 9
2. x = 1 vì A =( 1 + 3 ) + ( 1 + 7 ) + ( 1 + 11 ) = 4 + 8 + 12 = 24
Đây là đáp án mình làm thao khả năng của mk. Với lại câu 2 ko ghi rõ nên mk ko thể là chắc chắn đc
Ta có 2*7^n là số chẵn suy ra 2*7^n +1 chia hết cho 2+1=3
tại sao bạ ra như thế