Cho đa thức F(x)= x3+ax+b chia hết cho đa thức Q(x)= x2+x-2 (với a,b la các số thực).
CMR: P là số nguyên tố, biết P= (a+b)2+10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:\(x.f\left(x+1\right)=\left(x+2\right).f\left(x\right)\)
+)Thay \(x=0\) ta có:\(2.f\left(0\right)=0\)\(\implies\) \(f\left(0\right)=0\)
Vậy đa thức \(f\left(x\right)\) có nghiệm là x=0 (1)
+)Thay \(x=-2\) ta có:\(-2.f\left(-1\right)=0\)\(\implies\) \(f\left(-1\right)=0\)
Vậy đa thức \(f\left(x\right)\) có nghiệm là x=-1 (2)
Từ (1),(2)
\(\implies\) đa thức \(f\left(x\right)\) có ít nhất hai nghiệm
b)Ta có:\(f\left(x\right)=ax^2+bx+c\)
+)Với x=0 \(\implies\) \(f\left(0\right)=a.0^2+b.0+c=c:2007\left(1\right)\)
+)Với x=1 \(\implies\) \(f\left(1\right)=a.1^2+b.1+c=a+b+c:2007\left(2\right)\)
+)Với x=-1 \(\implies\) \(f\left(-1\right)=a.\left(-1\right)^2-b.1+c=a-b+c:2007\left(3\right)\)
Từ (2);(3) cộng vế với vế ta được:
\(\implies\) \(f\left(1\right)+f\left(-1\right)=a+b+c+a-b+c\)
\(=2a+2c\)
\(=2.\left(a+c\right):2007\)
mà \(\left(2,2007\right)=1\)\(\implies\) \(a+c:2007\) \(\left(4\right)\)
Từ \(\left(1\right),\left(4\right)\) \(\implies\) \(a:2007\) \(\left(5\right)\)
Từ \(\left(4\right),\left(2\right)\) \(\implies\) \(b:2007\) \(\left(6\right)\)
Từ \(\left(1\right),\left(5\right),\left(6\right)\) \(\implies\) các hệ số a,b,c đều chia hết cho 2007\(\left(đpcm\right)\)
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
Cách làm khác 1 chút .
\(F\left(x\right)=G\left(x\right).H\left(x\right)=\left(x-1\right)\left(x+2\right).H\left(x\right).\)
+Với \(x=1\Rightarrow F\left(x\right)=0\Leftrightarrow1+a+b=0\Rightarrow a+b=-1.\)(1)
+ Với x = -2 \(\Rightarrow F\left(x\right)=0\Leftrightarrow-8-2a+b=0\Rightarrow2a-b=-8.\)(2)
(1)(2) => a =-3 ; b =2
Vậy + P= ( -3 +2 ) 2 +10 = 11 là số nguyên tố
Ta có
\(x^3+ax+b=\left(x-1\right)\left(x^2+x-2\right)+\left(a+3\right)x+b-2\)
Để đây là phép chia hết thì phần dư phải bằng 0 hay
\(\hept{\begin{cases}a+3=0\\b-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-3\\b=2\end{cases}}}\)
\(\Rightarrow P=\left(a+b\right)^2+10=\left(-3+2\right)^2+10=11\)
Vậy P là số nguyên tố