K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2018

Ta có:\(AC^2=HC^2+AH^2\)(Định lý pytago)

\(\Rightarrow AH^2=AC^2-HC^2=4^2-2^2=16-4=12\)

\(\Rightarrow AH=\sqrt{12}\approx3\)

Độ dài BC là :3+2=5

Chu vi của tam giác ABC la:\(4+5+5\approx14\)

24 tháng 12 2021

Áp dụng định lý Pitago, ta có: \(AC^2=AH^2+HC^2\)

\(\Rightarrow20^2=12^2+HC^2\)

\(\Rightarrow HC^2=20^2-12^2\)

\(\Rightarrow HC^2=400-144=256\)

\(\Rightarrow HC=16\left(cm\right)\)

Áp dụng định lý Pitago, ta có: \(AB^2=BH^2+AH^2\)

\(\Rightarrow AB^2=5^2+12^2\)

\(\Rightarrow AB^2=25+144=169\)

\(\Rightarrow AB=13\left(cm\right)\)

Vậy CV tam giác ABC là

\(20+5+16+13=54\left(cm\right)\)

13 tháng 2 2018

Cho tam giác nhọn ABC,Kẻ AH vuông góc vơi BC,Tính chu vi tam giác ABC,AC = 20cm,AH = 12cm,BH = 5cm,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Đấy nha !

13 tháng 3 2020

A B C H

XÉT \(\Delta BAH\)VUÔNG TẠI H

CÓ \(AB^2=BH^2+HA^2\left(Đ/L,PY-TA-GO\right)\)

THAY\(5^2=BH^2+4^2\)

\(\Rightarrow BH^2=5^2-4^2\)

\(\Rightarrow BH^2=25-16\)

\(\Rightarrow BH^2=9\)

\(\Rightarrow BH=\sqrt{9}=3\left(cm\right)\)

TA CÓ \(BH+HC=BC\)

THAY\(3+12=BC\)

\(BC=15\left(cm\right)\)

XÉT \(\Delta HAC\)VUÔNG TẠI H

CÓ \(AC^2=AH^2+HC^2\)(Đ/L PYTAGO)

THAY\(AC^2=4^2+12^2\)

\(AC^2=16+144\)

\(AC^2=160\)

\(\Rightarrow AC=\sqrt{160}=4\sqrt{10}\)

CHU VI \(\Delta ABC\)

\(AB+AC+BC=5+4\sqrt{10}+15=20+4\sqrt{10}\)

1 tháng 5 2020

Hình bạn tự vẽ nhé 

AH vuông góc với BC => Tam giác AHB và tam giác AHC vuông tại H

Áp dụng định lí Pytago cho tam giác vuông AHB ta được :

AB2 = AH2 + BH2

BH = \(\sqrt{AB^2-AH^2}=\sqrt{5^2-4^2}=3cm\)

Áp dụng định lí Pytago cho tam giác vuông AHC ta được :

AC2 = AH2 + HC2

\(AC=\sqrt{AH^2+HC^2}=\sqrt{4^2+12^2}=12,649...\approx12,65cm\)

H thuộc BC => BC = BH + HC = 3 + 12 = 15cm

Chu vi hình tam giác ABC = AB + AC + BC = 5 + 12, 65 + 15 = 32, 65cm

#Sai thì bỏ qua nhé xD

1 tháng 5 2020

AD định lý Pytago  vào trong tam giác ABH vuông tại H ta có: BH= AB2 - AH2=25-16=9

Suy ra BH=3(cm)

Ta có BC=BH+CH =12+3=15(cm)

AD định lý Pytago vào trong tam giác AHC vuông tại H ta có:AC2=AH2+HC2=42+122=160

Suy ra:AC=12,65(cm;tương đương)

Vậy chu vi tam giác ABC là: 5+15+12.65=32.65(cm)

20 tháng 5 2020

Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H, ta có:

AH²+BH²=AB²

AH²=AB²−BH²

AH²=52−32

⇒AH²=16

⇒AH=4(cm)

Ta có:

BH+HC=BC

⇒HC=BC−BH

⇒HC=8−3

⇒HC=5(cm)

Áp dụng định lí Py-ta-go vào tam giác AHC vuông tại H, ta có:

AH²+HC²=AC²

42+52=AC²

⇒AC²=41

⇒AC=√41(cm)

Vậy HC = 5 cm, AC = √41 cm

#Tuyên#

A H B C

Xét Tam giác ABH vuông tại H :

Áp dụng định lí pitago ta có :

\(BH^2=AB^2-AH^2\)

\(\Leftrightarrow BH^2=5^2-4^2=9\)

\(\Rightarrow BH=\sqrt{9}=3cm\)

Mà BC = BH+HC 

\(\Rightarrow BC=3+12=15cm\)

Xét tam giác AHC vuông tại H :

áp dụng định lí pitago ta có :

\(AC^2=HC^2+AH^2\)

\(\Leftrightarrow AC^2=160\)

\(\Leftrightarrow AC=\sqrt{160}=4\sqrt{10}cm\approx12,6cm\)

\(\Rightarrow\)Chu vi tam giác ABC là :

AB+BC+AC \(\approx\)\(32,6cm\)

Vậy ...

14 tháng 6 2017

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

17 tháng 9 2019

Câu này dễ

AH 12cm

AC13cm

AB13cm