Tìm nghiệm nguyên của phương trình:
3x2 + 5y2 = 345
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2+5y^2=2022\) (1)
-Vì \(4x^2⋮2\) và \(2022⋮2\) nên \(5y^2⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)
-Đặt \(y=2k\left(k\in Z\right)\) và thay vào (1) ta được:
\(4x^2+5.\left(2k\right)^2=2022\)
\(\Leftrightarrow4x^2+5.4k^2=2022\)
\(\Leftrightarrow4x^2+20k^2=2022\)
\(\Leftrightarrow x^2+5k^2=\dfrac{2022}{4}=505.5\) (vô lý do x,k là các số nguyên)
-Vậy phương trình vô nghiệm.
=>3x^2-c=ax^2-2ax+a-bx+b
=>3x^2-c-a*x^2+2ax-a+bx-b=0
=>x^2(3-a)+x(2a+b)-a-b-c=0
Để phương trình luôn có nghiệm thì 3-a=0 và 2a+b=0 và a+b+c=0
=>a=3; b=-6; c=-a-b=-3+6=3
Mình chưa học phương trình nên giải theo cách của lớp dưới thôi :)))
Vì \(\hept{\begin{cases}345⋮5\\5y^2⋮5\end{cases}}\Rightarrow3x^2⋮5\)
Mà \(\left(3;5\right)=1\Rightarrow x^2⋮5\Rightarrow x⋮5\)
Lại có \(3x^2\le345\Rightarrow x^2\le115\Rightarrow\left|x\right|\le10\)
Mà \(x⋮5\Rightarrow x\in\left\{0;\pm5;\pm10\right\}\)
\(\Rightarrow y^2=\frac{345-3.25}{5}=54\)không phải số chính phương
\(\Rightarrow y^2=\frac{345-3.100}{5}=9\Rightarrow y=\pm3\)
Vậy \(\left(x;y\right)\in\left\{\left(10;3\right);\left(10;-3\right);\left(-10;3\right);\left(-10;-3\right)\right\}\)
\(3x^2+5y^2=345=>x^2=\frac{345-5y^2}{3}=>x=\sqrt{\frac{345-5y^2}{3}}\)
MODE 7 (TABLE) nhập \(f\left(x\right)=\sqrt{\frac{345-5X^2}{3}}\)
start -9 end: 9 ,step=1
tìm đc \(\left(x;y\right)=\left(10;3\right);\left(3;10\right);\left(-10;-3\right);\left(-3;-10\right)\)
đây là sử dụng máy tính casio