K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

nham hiểm >_<

17 tháng 10 2021

Trọng tâm : điểm giao nhau của 3 đường trung tuyến trong Tam giác 

Trực tâm : giao giữa ba đường cao

Đường trung trực : là đường vuông góc với 1 đoạn thẳng tại trung điểm của đoạn thẳng đó.


chắc giờ trả lời là trễ lắm rồi, 2021 cơ mà. Nhưng lỡ thì kệ đi.

10 tháng 2 2016

lop 6 sao ma lam duoc

10 tháng 2 2016

bn vẽ hình giùm mk đi, hoặc giải thích thế nào là trực tâm, trọng tâm z?

11 tháng 3 2020

a) Trên tia đối của tia OC lấy điểm N sao cho ON = OC,ta có : \(OM//BN\)và \(OM=\frac{1}{2}BN\)

Vì OM \(\perp\)BC,AH \(\perp\)BC,do đó OM //AH => NB // AH

Cmtt NA/BH

Xét \(\Delta\)ANB và \(\Delta\)BHA có :

AN = AH(gt)

\(\widehat{A_1}=\widehat{A_2}\)(gt)

\(\widehat{B_1}=\widehat{B_2}\)(gt)

=> \(\Delta ANB=\Delta BHA\left(g.c.g\right)\)

=> NB = AH(hai cạnh tương ứng)

Mà \(OM=\frac{1}{2}NB\)

=> AH = 2OM

b) Gọi I là trung điểm của AG,K là trung điểm của HG thì IK//AH => IK//OM,do đó \(\widehat{KIG}=\widehat{OMG}\)(so le trong)

Xét \(\Delta KGI\)và \(\Delta OMG\)có :

GI = GM(gt)

\(\widehat{G_1}=\widehat{G_2}\)(đối đỉnh)

\(\widehat{I}=\widehat{M}\)

=> \(\Delta KGI=\Delta OGM\left(g.c.g\right)\)

=> KG = GO

Từ đó ta có : HG = GO.

11 tháng 3 2020

Hình vẽ :

N A H G O K I M B C

20 tháng 2 2019

Nguyễn Thị Hội là con nào????????????????????????????????????????????????????????????????????????????????????????

) Gọi M là trung điểm BC. Lấy điểm D sao cho O là trung điểm CD

Xét Δ BCD có M là trung điểm BC, O là trung điểm CD \Rightarrow OM là đường trung bình của Δ BCD

\Rightarrow OM=12DB và OM // DB

mà OM⊥BC ( OM là đường trung trực của BC ) \Rightarrow DB⊥BC

mà AH⊥BC( AH là đường cao của ΔABC ) \Rightarrow AH // DB

Xét ΔABH và ΔBAD có

HABˆ=DBAˆ( 2 góc so le trong do AH // DB )

AB chung

ABHˆ=BADˆ( 2 góc so le trong do AH // DB )


\RightarrowΔABH=ΔBAD( g-c-g )

\Rightarrow AH = BD mà OM=12DB \Rightarrow OM=12AH

\Rightarrow AH = 2 OM ( đpcm )

b) Gọi G' là giao điển của AM và OH, P là trung điểm G'H, Q là trung điểm G'A

Xét Δ AG'H có P là trung điểm G'H, Q là trung điểm G'A \Rightarrow PQ là đường trung bình của \large\Delta AG'H

\RightarrowPQ=12AH và PQ // AH

Do PQ=12AH mà OM=12AH\Rightarrow PQ = OM

Do AH // OM ( cùng ⊥BC ) mà PQ // AH\Rightarrow PQ // OM

Xét ΔPQG′ và ΔOMG′ có

PQG′ˆ=OMG′ˆ( 2 góc so le trong do PQ // OM)

PQ = OM (c/m trên )

QPG′ˆ=MOG′ˆ ( 2 góc so le trong do PQ //OM )


\Rightarrow ΔPQG′=ΔOMG′( g-c-g )

\Rightarrow G'Q = G'M và G'P = G'O

Ta có G'Q = G'M mà G′Q=12G′A( Q là trung điểm G'A ) \Rightarrow G′M=12G′Amà G'M + G'A = AM

\Rightarrow G′A=23AM mà AM là trung tuyến của ΔABC

\Rightarrow G' là trọng tâm của ΔABC ,mà G là trọng tâm của ΔABC \RightarrowG′≡ G

mà G′∈OH \RightarrowG∈OH \Rightarrow O, H, G thẳng hàng ( đpcm )

Vẽ đường kính BK của đường tròn tâm O ngoại tiếp tam giác ABC=> O trung điểm BK

Gọi M là chân đường vuông góc hạ từ O xuống dây BC => OM là khoảng cách từ O tới BC

Có OB=OC và B,C nằm trên đường tròn tâm O=> tam giác OBC cân tại O, đường cao OM=> M trung điểm BC

=> OM là đường trung bình tam giác BCK=> \(OM=\frac{1}{2}CK\)

C thuộc đường tròn đường kính BK=> tam giác BCK vuông tại K=> \(KC\perp BC\)

Mà \(AH\perp BC\Rightarrow AH//CK\)

A thuộc đường tròn đường kính BK=> tam giác BAK vuông tại A=> \(AK\perp AB\)

Mà \(CH\perp AB\Rightarrow CH//AK\)

=> AHCK là hình bình hành => \(AH=CK\Rightarrow OM=\frac{1}{2}AH\)