K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

Theo đề bài ta đặt \(f\left(x\right)=\left(x^2-2x+b\right)\left(8x^2+cx+d\right)\)

Phân tích ra được \(8x^4-9x^3+a^2+33x-18=8x^4-x^3\left(16-c\right)+x^2\left(d+b\right)+x\left(bc-2d\right)+bd\)

Sử dụng đồng nhất hệ thức : \(16-c=9\)\(d+b=0\) ; \(bc-2d=33\) ; \(a^2-18=bd\)

Giải ra được \(a=-\frac{\sqrt{41}}{3},b=\frac{11}{3}\) hoặc \(a=\frac{\sqrt{41}}{3},b=\frac{11}{3}\)

14 tháng 8 2017

My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé

https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N

14 tháng 8 2017

Ko biết đợi đứa khác đê

3 tháng 8 2017

Bài 2:

\(g\left(x\right)=x^2+9x+20=\left(x+4\right)\left(x+5\right)\)

Để \(f\left(x\right)=x^3+ax^2+bx-60\) chia hết cho \(g\left(x\right)=\left(x+4\right)\left(x+5\right)\) thì

\(\left\{{}\begin{matrix}f\left(-4\right)=0\\f\left(-5\right)=0\end{matrix}\right.\)

Với \(f\left(-4\right)\) ta có:

\(f\left(-4\right)=-64+16a-4b-60=0\)

\(\Leftrightarrow16a-4b=124\)

(1)

Với \(f\left(-5\right)\) , ta có:

\(f\left(-5\right)=-125+25a-5b-60=0\)

\(\Leftrightarrow25a-5b=185\)(2)

Từ (1) và (2) , ta có:

\(\left\{{}\begin{matrix}16a-4b=124\\25a-5b=185\end{matrix}\right.\)

Giải hệ ta được :

\(\left\{{}\begin{matrix}a=6\\b=-7\end{matrix}\right.\)

p/s: Lm xog chả bk mk lm cái zề nữa hiha

T.Thùy Ninh

3 tháng 8 2017

Theo bài toán:

\(x^2+5x+4=x^2+x+4x+4=\left(x+1\right)\left(x+4\right)\)\(x^5+x^4-15x^3-5x^2+34x+24\)

\(=x^5+x^4-15x^3-15x^2+10x^2+10x^2+24x+24\)\(=x^4\left(x+1\right)-15x^2\left(x+1\right)+10x\left(x+1\right)+24\left(x+1\right)\)\(=\left(x+1\right)\left(x^4-15x^2+10x+24\right)\)

Ta có:

\(\dfrac{\left(x^5+x^4-15x^3-5x^2+34x+24\right)}{x^2+5x+4}\)

\(=\dfrac{\left(x+1\right)\left(x^4+15x^2+10x+24\right)}{\left(x+1\right)\left(x+4\right)}=\dfrac{x^4+15x^2+10+24}{x+4}\) \(=\dfrac{x^4+4x^3-4x^3-16x^2+x^2+4x+6x+24}{x+4}\) \(=\dfrac{x^3\left(x+4\right)-4x^2\left(x+4\right)+x\left(x+4\right)+6\left(x+4\right)}{x+4}\)

\(=\dfrac{\left(x+4\right)\left(x^3-4x^2+x+6\right)}{x+4}\)

\(=x^3-4x^2+x+6\)

p/s : ko bk đúng kh nữa . Định chia theo cách bình thường nhưng lười lấy giấy ra rồi chụp ảnh nên lm theo cách này. Sai thôg cảm nha

a: \(\Leftrightarrow x^3-x^2-x^2+x+3⋮x-1\)

\(\Leftrightarrow x-1\in\left\{-1;1;3;-3\right\}\)

hay \(x\in\left\{0;2;4;-2\right\}\)

DD
25 tháng 12 2022

Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được

\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)

Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).

a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).

b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).

AH
Akai Haruma
Giáo viên
26 tháng 6 2024

Lời giải:

$f(x)=x^4+x^3+ax^2+4x+b=x^2(x^2-2x+2)+3x(x^2-2x+2)+(a+4)x^2-2x+b$

$=(x^2+3x)(x^2-2x+2)+(a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$

$=(x^2+3x+a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$

$=(x^2+3x+a+4)g(x)+2(a+3)x-2(a+4)+b$

Để $f(x)\vdots g(x)$ thì:

$2(a+3)x-2(a+4)+b=0,\forall x$

$\Rightarrow a+3=-2(a+4)+b=0$

$\Rightarrow a=-3; b=2$