Cho 3 số tự nhiên a,b,c thỏa mãn:a<b <_ c; 23<a<30;10<c<26.Khi đó b là?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Ngọc Sơn Lâm - Toán lớp 7 - Học toán với OnlineMath
Gọi d =(a;b)
=> a ; b chia hết cho d
Ta có: 3a -2b
= 3(2n+3) - 2(3n+1)
=6n +6 -6n -2 =4 chia hết cho 4 =>d=4
=> UCLN(a;b) =4
Gọi d = (a;b)
=>a;b chia hết cho d
Ta có : 3a - 2b =
= 3(2n+3) - 2(3n+1)
=6n + 6 - 6n - 2 = 4 chia hết cho 4 => d = 4
=> ƯCLN(a;b)=4
Có a+4b chia hết cho 13
=> a+13a+4b+13b chia hết cho 13
=> 14a+17b chi hết cho 13
=> 10a+4a+b+16b chia hết cho 13
=> (10a+b)+(4a+16b) chia hết cho 13
=> (10a+b)+4(a+4b) chia hết cho 13
Mà a+4b chia hết cho 13 => 4(a+4b) chia hết cho 13
=> Để (10a+b)+4(a+4b) chia hết cho 13 thì 10a+b chia hết cho 13 (đpcm)
k cho mik nha
a,126;120;201;162 b,120;102
Mik tìm đc những số này, bạn tham khảo.
a) Từ 4 chữ số 0, 1, 2, 3:
- Hàng trăm có 3 cách chọn.
- Hàng chục có 3 cách chọn.
- Hàng đơn vị có 2 cách chọn.
Vậy có tất cả 3.3.2 = 18 số tự nhiên khác nhau có 3 chữ số được lập từ 0, 1, 2, 3.
b) - Trường hợp 1: hàng đơn vị là số 0 như vậy hàng trăm có 3 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 3 = 6 số có thể lập được.
- Trường hợp 2: hàng đơn vị là số 2 như vậy hàng trăm có 2 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 2 = 4 số có thể lập được.
Vậy có thể lập 6 + 4 = 10 số tự nhiên chẵn có ba chữ số khác nhau.
Đề đúng không em nhỉ?
Đề bài thế này vẫn tính được a;b;c, nhưng số rất xấu (căn thức, lớp 7 chưa học)
Biểu thức thứ hai: \(b+bc+c=5\) phải là \(b+bc+c=8\) hoặc 3; 15; 24; 35; 48... gì đó mới hợp lý, nghĩa là cộng thêm 1 phải là 1 số chính phương
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
vậy \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=6\)
Theo đề bài ta có :
\(a+b+b+c+c+a=-3-5+10\)
\(\Rightarrow\)\(2a+2b+2c=2\)
\(\Rightarrow\)\(2\left(a+b+c\right)=2\)
\(\Rightarrow\)\(a+b+c=\frac{2}{2}=1\)
Do đó :
\(a=a+b+c-\left(b+c\right)=1-\left(-5\right)=6\)
\(b=a+b+c-\left(c+a\right)=1-10=-9\)
\(c=a+b+c-\left(-3\right)=1+3=4\)
Vậy \(a=6\)\(;\)\(b=-9\)và \(c=4\)
Chúc bạn học tốt