giá trị y thỏa mãn - giá trị tyet đổi x-2.5 - giá trị tuyệt đối y+2.6=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\hept{\begin{cases}\left|x-2,5\right|\ge0\\\left|3,5-x\right|\ge0\end{cases}}\) nên ta phải có : x - 2,5 = 3,5 - x = 0 => x = 2,5 và x = 3,5
Điều này không thể đồng thời xảy ra.Vậy không tồn tại thỏa mãn x đã cho
| x - 2, 5 | + | 3, 5 - x | = 0 (*)
Áp dụng BĐT | a | + | b | ≥ | a + b | ta có :
| x - 2, 5 | + | 3, 5 - x | ≥ | x - 2,5 + 3, 5 - x | = | 1 | = 1 \(\ne\)0
=> (*) không thể xảy ra
=> Không tồn tại giá trị của x thỏa mãn
từ x=6y và |x|-|y|=60 => |x|=72 ; |y|=12
x2=(|x|)2=722=5184;y2=(|y|)2=122=144
x=6y => xy=6y2 =>xy=6.144=864
=> x2+y2+xy=5184+864+144=6192
vậy...
Vì \(\hept{\begin{cases}\left(2x+1\right)^2\ge0\\\left|y-1,2\right|\ge0\end{cases}}\)nên \(\left(2x+1\right)^2+\left|y-1,2\right|=0\)khi và chỉ khi:
\(\hept{\begin{cases}\left(2x+1\right)^2=0\\\left|y-1,2\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}2x+1=0\\y-1,2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=1,2\end{cases}}\)
=>Giá trị của x+y là: \(-\frac{1}{2}+1,2=0,7\)
Vậy x+y=0,7
giá trị tuyệt đối X + giá trị tuyệt đối Y+ giá trị tuyệt đối Z=0
suy ra giá trị tuyệt đối X + giá trị tuyệt đối Y+ giá trị tuyệt đối Z=X+Y+Z
X+Y+Z=0
suy ra
Y=0
Z=0
X=0