cho S= 1+3^2+3^4+3^6+.......+3^98 . Tính S và chứng minh S chia hết cho 10
( chia hết cho 10 mình biết rùi)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=1+3^2+3^4+3^6+...+3^{98}\)
\(=\left(1+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{96}+3^{98}\right)\)
\(=10+3^4\cdot10+...+3^{96}\cdot10\)
\(=10\left(1+3^4+...+3^{96}\right)⋮10\)(ĐPCM)
Ta có S=1+32+34+...+398=>32.S=32+34+36+....+3100
=(S-1)+3100
=>9S=S+3100-1=>\(S=\frac{3^{100}-1}{8}\)
Ta thấy S=1+32+34+..+398=(1+398)+(32+34)+....+(394+396)
Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...
Tóm lại S có tận cùng là 0 hay S chia hết cho 10.
Mk ngĩ ra rồi
S=(1+32)+(34+36)+...+(396+398)
S=10+34.(1+32)+...+396.(1+32)
S=10+34.10+...+396.10
S=10(1+34+...+396)
có thừa số 10 chia hết cho 10 nên tích chia hết cho 10
S = 1 + 32 + 34 + 36 + ... + 392 + 394 + 396 + 398
= (1 + 32) + (34 + 36) + ... + (392 + 394)+ (396 + 398)
= (1 + 32) + 34(1 + 32) + .... + 392(1 + 32) + 396(1 + 32)
= (1 + 9) + 34(1 + 9) + ..... + 392.( 1 + 9) + 396(1 + 9)
= 10 + 34.10 + ...... + 392.10 + 396.10
= 10(1 + 34 + ..... + 392 + 396) Chia hết cho 10
=> S Chia hết cho 10 (ĐPCM)
S=1+3^2+,,,,,,,+3^97+3^98
S=(1+3^2)+.............+(3^97+3^98)
S=(1+3^2)+............+3^97.(1+3^2)
S=(1+9)+........+3^97.(1+9)
S=10+......+3^97.10 \(⋮\)10
Vì (1+9=10\(⋮\)10)
=>S\(⋮10\)
S=1+32+34+36+.............................+398
9S=3+34+36+38+.........................+3100
=> 9S-S=3100-1
3100-1=(34)25-1
=(...1)25-1
=(.....1)-1
=(.....0) chia hết cho 10
Vậy S chia hết cho 10
a, \(S=1+3^2+3^4+3^6+...+3^{98}\)
\(\Rightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{100}\)
\(\Rightarrow3^2S-S=\left(3^2+3^4+3^6+3^8+...+3^{100}\right)-\left(1+3^2+3^4+3^6+...+3^{98}\right)\)
\(\Rightarrow8S=3^{100}-1\)
\(\Rightarrow S=\frac{3^{100}-1}{8}\)
Vậy : \(S=\frac{3^{100}-1}{8}\)
b, \(S=1+3^2+3^4+3^6+...+3^{98}\)
\(S=\left(1+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{96}+3^{98}\right)\)
\(S=\left(1+3^2\right)+3^4\left(1+3^2\right)+...+3^{96}\left(1+3^2\right)\)
\(S=1.10+3^4.10+...+3^{96}.10\)
\(S=\left(1+3^4+...+3^{96}\right).10\)
Vì : \(1+3^4+...+3^{96}\in N\Rightarrow S⋮10\)
Vậy : \(S⋮10\)
CHỨNG MINH S CHIA HẾT CHO 10 :
\(S=4+4^2+...+4^{2004}\)
\(S=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2003}+4^{2004}\right)\)
\(S=1\left(4+4^2\right)+4^3\left(4+4^2\right)+...+4^{2003}\left(4+4^2\right)\)
\(S=1.20+4^3.20+...+4^{2003}.20\)
\(S=20.\left(1+4^3+...+4^{2003}\right)\)CHIA HẾT CHO 10 (VÌ 20 CHIA HẾT CHO 10 )
\(=>dpcm\)
CHỨNG MINH 3S+4 CHIA HẾT CHO 42004
\(S=4+4^2+4^3+...+4^{2004}\)
\(4S=4+4^2+4^3+...+4^{2005}\)
\(3S=4S-S=4^{2005}-4\)
MÀ 42005 CHIA HẾT CHO 42004
\(=>3S+4\)CHIA HẾT CHO \(4^{2004}\left(dpcm\right)\)
a,S=1+3+32+...+360
3S=3+32+33+...+361
3S-S=(3+32+33+...+361)-(1+3+32+...+360)
2S = 361 - 1
b,2S+1=361-1+1=361 = 3x-3
=>x-3=61=>x=64
c, S=1+3+32+...+360
=(1+3)+(32+33)+...+(359+360)
=4+32(1+3)+...+359(1+3)
=4+32.4+...+359.4
=4(1+32+...+359) chia hết cho 4
S=1+3+32+...+360
=(1+3+32)+....+(358+359+360)
=13+...+358(1+3+32)
=13+...+358.13
=13(1+...+358)
3^2xS=3^2+3^4+3^6+...+3^100
=>3^2S-S=8S=3^100-3^2
=>S=(3^100-3^2):8
sai rùi không có cách nào hay hơn à
mình làm theo cách này kết quả khác.có cách nào hơn thì làm nha