K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2021

a) Do BE và CF là các đường cao trong tam giác ABC nên ˆBEC=90∘ˆBFC=90∘ 

Tứ giác BCEF có góc E và góc F cùng nhìn cạnh BC và bằng nhau (cùng bằng 90∘) nên là tứ giác nội tiếp.

b) Tứ giác BCEF là tứ giác nội tiếp nên ˆAFE=ˆACB, mà ˆACB=ˆASB (cùng chắn cung AB) nên ˆAFE=ˆASB

Suy ra tứ giác BFMS là tứ giác nội tiếp.

Do đó ˆFMS=180∘−ˆFBS=90∘.. Vậy OA ⊥⊥ EF.

c)

+) Tứ giác BCEF nội tiếp nên ˆAEF=ˆABC (1)

Từ OA ⊥ PE suy ra ˆAIB=ˆAPE(cùng phụ với ˆMAP). (2)

Từ (1) và (2) suy ra ΔAPE∽ΔABI (g.g).

+) Tứ giác BHCS có BH // CS (cùng vuông góc với AS) và BS // CH (cùng vuông góc với AB) nên là hình bình hành. Do đó ba điểm H, K, S thẳng hàng.

Ta sẽ chứng minh hai góc đồng vị ˆPIM và HSM^ bằng nhau.

Tứ giác PDIM nội tiếp (vì có hai góc vuông M và D đối nhau) nên ˆPIM=ˆPDM (3)

Ta có:

ΔAHE∽ΔACDΔ nên AH.AD = AE.AC.

ΔAME∽ΔACSnên AM.AS = AE.AC.

Suy ra AH.AD = AM.AS ⇒AH/AM=AS/AD.

Do đó ΔMAH∽ΔDAS(c.g.c). Suy ra AHM^=ASD^.

Từ đó ta có tứ giác DHMS là tứ giác nội tiếp. Suy ra ˆHDM=ˆHSM. (4)

Từ (3) và (4) suy ra HS // PI, hay KH // PI.

1) Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

nên BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay B,C,E,F cùng thuộc một đường tròn(đpcm)

a) Ta có: \(\widehat{CFB}=90^0\)(CF⊥AB)

nên F nằm trên đường tròn đường kính CB(Định lí)(1)

Ta có: \(\widehat{CEB}=90^0\)(BE⊥AC)

nên E nằm trên đường tròn đường kính CB(Định lí)(2)

Từ (1) và (2) suy ra F,E cùng nằm trên đường tròn đường kính CB

hay B,E,F,C cùng thuộc một đường tròn(đpcm)

Tâm I của đường tròn ngoại tiếp tứ giác BEFC là trung điểm của CB

b) Ta có: BEFC là tứ giác nội tiếp(cmt)

nên \(\widehat{EFC}=\widehat{EBC}\)(Cùng nhìn cạnh EC)

\(\Leftrightarrow\widehat{KFC}=\widehat{KBE}\)

Xét ΔKFC và ΔKBE có 

\(\widehat{FKB}\) chung

\(\widehat{KFC}=\widehat{KBE}\)(cmt)

Do đó: ΔKFC∼ΔKBE(g-g)

\(\dfrac{KF}{KB}=\dfrac{KC}{KE}\)(Các cặp cạnh tương ứng tỉ lệ)

\(KE\cdot KF=KB\cdot KC\)(đpcm)

13 tháng 10 2023

a: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>B,F,E,C cùng thuộc một đường tròn

b: Xét (O) có

ΔABA' là tam giác nội tiếp

AA' là đường kính

Do đó: ΔABA' vuông tại B

=>BA'\(\perp\)AB

mà CH\(\perp\)AB

nên BA'//CH

Xét (O) có

ΔACA' là tam giác nội tiếp

AA' là đường kính

Do đó: ΔACA' vuông tại C

=>AC vuông góc CA'

mà BH vuông góc AC

nên BH//A'C

Xét tứ giác BHCA' có

BH//CA'

BA'//CH

Do đó: BHCA' là hình bình hành

a) Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

nên BFEC là tứ giác nội tiếp

hay B,F,E,C cùng thuộc một đường tròn

Tâm I là trung điểm của BC

12 tháng 11 2021

 

  

a) Ta có: \(\widehat{BFC}=90^0\)(CF\(\perp\)AB)

nên F nằm trên đường tròn đường kính BC(Định lí)(1)

Ta có: \(\widehat{BEC}=90^0\)(BE\(\perp\)AC)

nên E nằm trên đường tròn đường kính BC(Định lí)(2)

Từ (1) và (2) suy ra F,E cùng nằm trên đường tròn đường kính BC

hay B,F,E,C cùng thuộc một đường tròn(đpcm)

10 tháng 8 2017

1.Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEC = 900.

CF là đường cao => CF ┴ AB => góc BFC = 900.

Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC.

Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.

3. Xét hai tam giác AEH và ADC ta có: góc AEH = góc ADC = 900; góc A là góc chung

=> Δ AEH ˜ Δ ADC => AE/AD = AH/AC=> AE.AC = AH.AD.

* Xét hai tam giác BEC và ADC ta có: góc BEC = góc ADC = 900; góc C là góc chung

=> Δ BEC ˜ Δ ADC => AE/AD = BC/AC => AD.BC = BE.AC.

4. Ta có góc C1 = góc A1 (vì cùng phụ với góc ABC)

góc C2 = góc A1 ( vì là hai góc nội tiếp cùng chắn cung BM)

=> góc C1 = góc C2 => CB là tia phân giác của góc HCM; lại có CB ┴ HM => Δ CHM cân tại C

=> CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC.

5. Theo chứng minh trên bốn điểm B, C, E, F cùng nằm trên một đường tròn

=> góc C1 = góc E1 (vì là hai góc nội tiếp cùng chắn cung BF)

Cũng theo chứng minh trên CEHD là tứ giác nội tiếp

góc C1 = góc E2 (vì là hai góc nội tiếp cùng chắn cung HD)

góc E1 = góc E2 => EB là tia phân giác của góc FED.

Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF.

10 tháng 8 2017

1. Xét tứ giác CEHD ta có:

góc CEH = 900 (Vì BE là đường cao)

góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.

AD là đường cao => AD ┴ BC => BDA = 900.

Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.

Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.

3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến

=> D là trung điểm của BC. Theo trên ta có góc BEC = 900.

Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 1/2 BC.

4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => góc E1 = góc A1 (1).

Theo trên DE = 1/2 BC => tam giác DBE cân tại D => góc E3 = góc B1 (2)

Mà góc B1 = góc A1 (vì cùng phụ với góc ACB) => góc E1 = góc E3 => góc E1 + góc E2 = góc E2 + góc E3

Mà góc E1 + góc E2 = góc BEA = 900 => góc E2 + góc E3 = 900 = góc OED => DE ┴ OE tại E.

Vậy DE là tiếp tuyến của đường tròn (O) tại E.

5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ↔ ED2 = 52 – 32 ↔ ED = 4cm

14 tháng 3 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét tứ giác BFEC có:

∠(BFC) = 90 0  (Do CF là đường cao)

∠(BEC ) =  90 0  (Do BE là đường cao)

⇒ E và F cùng nhìn BC dưới một góc bằng nhau

⇒ Tứ giác BFEC nội tiếp được đường tròn

⇒ Bốn điểm B, E, F, C cùng nằm trên đường tròn