Tìm hai số tự nhiên biết tổng của chúng bằng 192 và ước chung lớn nhất của chúng bằng 20. giải hộ mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số tự nhiên đã cho là a và b ( a và b là các số tự nhiên khác 0 ; a < b )
Ưóc chung lớn nhất của hai số là 12 nên ta đặt \(\hept{\begin{cases}a=12m\\b=12n\end{cases}}\)
Suy ra : m và n là số nguyên tố cùng nhau
BCNN của hai số bằng 72 nên ta có :
\(\hept{\begin{cases}a=12m\\b=12n\\\left(m,n\right)=1\end{cases}}\Rightarrow BCNN\left(a,b\right)=12mn\)
\(\Rightarrow12mn=72\Leftrightarrow mn=6\Leftrightarrow\orbr{\hept{\begin{cases}m=1\\n=6\end{cases}}}\)
\(\orbr{\hept{\begin{cases}m=2\\n=3\end{cases}}}\)
\(\Leftrightarrow\orbr{\hept{\begin{cases}a=12\\b=72\end{cases}}}\)
\(\orbr{\hept{\begin{cases}a=24\\b=36\end{cases}}}\)
Do hai số có hàng đơn vị khác nhau nên hai số đó là 24 và 36
\(\left\{{}\begin{matrix}a+b=221\\UCLN\left(a;b\right)=13\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=13m\\b=13n\\\left(m;n\right)=1\end{matrix}\right.\)
\(\Rightarrow13m+13n=221\)
\(\Rightarrow13\left(m+n\right)=221\)
\(\Rightarrow m+n=17\)
- Với \(\left\{{}\begin{matrix}m=16\\n=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=208\\b=13\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}m=14\\n=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=182\\b=39\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}m=12\\n=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=156\\b=65\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}m=10\\n=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=130\\b=91\end{matrix}\right.\)
- Với \(\left\{{}\begin{matrix}m=6\\n=11\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=78\\b=143\end{matrix}\right.\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(108;13\right);\left(182;39\right);\left(156:65\right);\left(130;91\right);\left(78;143\right)\right\}\)
Gọi hai số tự nhiên thỏa mãn đề bài là a và b thì theo bài ra ta có:
ƯCLN(a,b) =18 ⇒ \(\left\{{}\begin{matrix}a=18m\\b=18n\end{matrix}\right.\) (m.n) = 1 ; m,n \(\in\) N*
18m + 18n = 144 ⇒ m + n = 144: 18 = 8
Vì (m, n) = 1 ⇒ (m, n) = ( 1; 7); ( 3; 5)
th1: (m,n) = (1.7) ⇒ a = 18; b = 18 \(\times\) 7 = 126
th2: (m,n) = (3,5) ⇒ a = 18 \(\times\) 3 = 54; b = 18 \(\times\) 5 = 90
Kết luận hai cặp số tự nhiên thỏa mãn đề bài là:
18 và 126; 54 và 90
Lời giải:
Gọi 2 số cần tìm là $a,b$. Vì $ƯCLN(a,b)=12$ nên đặt $a=12x, b=12y$ với $x,y$ là stn, $(x,y)=1$.
Ta có:
$a+b=144$
$\Rightarrow 12x+12y=144$
$\Rightarrow x+y=144:12=12$
Mà $(x,y)=1$ nên $(x,y)$ có thể nhận giá trị: $(x,y)=(1,11), (5,7), (7,5), (11,1)$
$\Rightarrow (a,b)=(12, 132), (60, 84), (84,60), (132,12)$
giả sử a nhỏ hơn hoặc b
theo bài ra : a+b=128 ;(a,b)=16
(a,b)=16=>a=16m ;b=16n (m,nthuộc N ; m nhỏ hơn hoặc bằng n ; (m,n)=1)
=>a.b =16m+16n =>128=16(m+n)=> 8=m+n
lập bẳng giá trị :
m 1 3
n 7 5
a 16 48
b 112 80
a+b 128 128
vậy 2 số a,b cần tìm là :(16;112);(112;16);(48;80);(80;48)
Vì UCLN ( a,b ) = 16 nên a = 16a1 , b = 16b1
(a1 , b1) = 1 , a1,b1 € N*
Mà a + b = 128
=> thay a = 16a1 , b = 16b1 , ta có :
16a1 + 16b1 = 128
16 ( a1 + b1 ) = 128
a1 + b1 = 128 : 16
a1 + b1 = 8
Sau đó bn vẽ bảng thử chọn a,b ( tự lm nhé ) nhớ căn cứ ( a1 , b1 ) = 1 để tự chọn
Lưu ý : € : thuộc
Gọi 2 số cần tìm là a và b ta có:
UCLN(a,b) = 20
< = > a chia hết cho 20 ; b chia hết cho 20
< = > a + b chia hết cho 20
Mà 192 không chia hết cho 20
Nên không tồn tại 2 số cần tìm
gọi hai số cần tìm là avà b