cho tam giác ABC có 3 góc nhọn và h là trực tâm. vẽ hình bình hành BHCD.đường thẳng đi qua D và song songBC cắt AH tại E
1. chứng minh A,B,C,D,E cùng thuộc đường tròn
2.chứng minh góc BAE= gócDAC
3. gọi O là tâm đường tròn ngoại tiếp tam giác ABC và M là trung điểm của BC, AM cắt OH tại G. chứng minh rằng G là trọng tâm của tam giac ABC
4.gỉa sử OD =a. tính đường tròn ngoại tiếp tam giác BHC
a, HCDB là hbh (gt)
-> CH // BD; HB // CD
Vì H là trực tâm của Δ ABC (gt)
-> CH vuông với AB ; BH vuông với AC ; AH vuông với BC
-> AB vuông BD ; AC vuông CD
-> ^ABD=90*, ^ ACD=90*
Xét tứ giác ABCD có: ^ABD + ^ ACD = 180*
-> tứ giác ABCD nội tiếp
-> A, B, C, D cùng thuộc 1 đường tròn (1)
DE // BC (gt)
->AH vuông DE ( vì AH vuông BC )
-> ^AED = 90*
Xét tứ giác ABED có ^AED=^ABD=90*
-> B và E cùng nhìn AD dưới 1 góc 90*
-> ABED nội tiếp
-> A,B,E,D cùng thuộc 1 đường tròn (2)
Từ (1) và (2) -> A,B,C,D,E cùng thuộc một đường tròn
b) ABEDC nội tiếp
-> ^BAE = ^BDE (2 góc nội tiếp cùng chắn cung BE)
Và ^DAC = ^DBC (2 góc nội tiếp cùng chắn cung CD)
Mà ^DBC = ^BDE (2 góc sole trong)
-> ^BAE = ^CAD