Cho đa thức A = \(-2xy^2+3xy+5xy^2+5xy+1\)
a) Thu gọn đa thức A
b) Tính giá trị của A khi x = \(\dfrac{-1}{2};y=-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = -2xy2 + 3xy + 5xy2 + 5xy + 1
A = (-2xy2 + 5xy2) + (3xy + 5xy) + 1
A = 3xy2 + 8xy + 1
b) Với x = \(\frac{-1}{2}\) ; y = -1
Thì A = 3xy2 + 8xy + 1
A = \(3.\frac{-1}{2}.1^2+8.\frac{-1}{2}.1+1\)
A = \(-\frac{9}{2}\)
Bài 1. A= 3x^2y-5x^2y
= 3.(-2)^2.0,5-5.(-2)^2.0,5
= -4
Bài 2. a) A= 3xy^2+8xy+1
b)A= 3.(-1/2).1^2+8.(-1/2).1+1
=-9/2
bài 1:
A=3x^2y-5x^2y=4 tại x=-2vày=0,5
bài 2
a) khi thu gọn A ta được:
A=3xy^2+8xy+1
b) tính giá trị A:
A=3xy^2+8xy+1=-4 tại x=-1/2;y=1
xong rồi đó nếu đúng thì tick cho mình nhé
Ta có:
\(P=4x^2y^2-3xy^3+5x^2y^2-5xy^3-xy+x-1\)
\(P=\left(4x^2y^2+5x^2y^2\right)-\left(3xy^3+5xy^3\right)-xy+x-1\)
\(P=9x^2y^2-8xy^3-xy+x-1\)
Bậc của đa thức P là: \(2+2=4\)
Thay x=-1 và y=2 vào P ta có:
\(P=9\cdot\left(-1\right)^2\cdot2^2-8\cdot-1\cdot2^3-\left(-1\right)\cdot2+\left(-1\right)-1=100\)
\(Q=-4x^2y^2-xy+4xy^3+2xy-6x^3y-4x^3y\)
\(Q=-4x^2y^2-\left(xy-2xy\right)+4xy^3-\left(6x^3y+4x^3y\right)\)
\(Q=-4x^2y^2+xy+4xy^3-10x^3y\)
Bậc của đa thức Q là: \(2+2=4\)
Thay x=-1 và y=2 vào Q ta có:
\(Q=-4\cdot\left(-1\right)^2\cdot2^2+\left(-1\right)\cdot2+4\cdot-1\cdot2^3-10\cdot\left(-1\right)^3\cdot2=-30\)
`A = x^2y - 7xy = xy(x-7)`
Khi `x = 3; y = -1/2` thì GTBT là:
`3.(-1/2)(3-7) = -3/2 . -4 = 6`.
a, \(M=x^2y+\frac{1}{3}xy^2+\frac{3}{5}xy^2-2xy+3x^2y-\frac{2}{3}\)
\(M=\left(x^2y+3x^2y\right)+\left(\frac{1}{3}xy^2+\frac{3}{5}xy^2\right)-2xy-\frac{2}{3}\)
\(M=4x^2y+\frac{8}{15}xy^2-2xy-\frac{2}{3}\)
b, Giá trị của biểu thức \(M=4x^2y+\frac{8}{15}xy^2-2xy-\frac{2}{3}\) tại \(x=-1\) và \(y=\frac{1}{2}\)
\(M=4.\left(-1\right)^2.\frac{1}{2}+\frac{8}{15}.\left(-1\right).\left(\frac{1}{2}\right)^2-2.\left(-1\right).\frac{1}{2}-\frac{2}{3}\)
\(M=4.1.\frac{1}{2}+\frac{8}{15}.\left(-1\right).\left(\frac{1}{4}\right)+1-\frac{2}{3}\)
\(M=2-\frac{2}{15}+1-\frac{2}{3}\)
\(M=\left(2+1\right)+\left(-\frac{2}{15}-\frac{2}{3}\right)\)
\(M=3+\left(\frac{-4}{5}\right)\)
\(M=\frac{11}{5}\)
Vậy giá trị của biểu thức \(M=4x^2y+\frac{8}{15}xy^2-2xy-\frac{2}{3}\) tại \(x=-1\) và \(y=\frac{1}{2}\) bằng \(\frac{11}{5}\)
\(P=\dfrac{1}{3}x^2y+xy^2-xy+\dfrac{1}{2}xy^2-5xy-\dfrac{1}{3}x^2y=\dfrac{3}{2}xy^2-6xy\)
Thay x = 2 ; y = 1 ta được
\(\dfrac{3}{2}.2.1-6.2.1=3-12=-9\)
Bạn nên viết đề cho rõ ràng để mọi người hiểu đề và hỗ trợ bạn tốt hơn. Viết đề díu dít vào nhau và không gõ công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) khiến bài của bạn có khả năng bị bỏ qua cao hơn nhé.
a) Ta có A = - 2xy2 + 3xy + 5xy2 + 5xy + 1
= (- 2xy2 + 5xy2) + (3xy + 5xy) + 1
= 3xy2 + 8xy + 1
b) Thay x = -1/2 ; y = - 1 vào A
=> A = \(3.\left(-\frac{1}{2}\right).\left(-1\right)^2+8.\left(-\frac{1}{2}\right).\left(-1\right)=-\frac{3}{2}+4=\frac{5}{2}\)
a) A = -2xy2 + 3xy + 5xy2 + 5xy + 1
= (-2xy2 + 5xy2) + (3xy + 5xy) + 1
= 3xy2 + 8xy + 1
c) A = 3 . (-1/2) . (-1)2 + 8 . (-1/2) . (-1) + 1
= 3 . (-1/2) . 1 + 8 . (-1/2) . (-1) + 1
= -3/2 + 8/2 + 1
= 5/2 + 1
= 7/2
a.\(A=3xy^2+8xy+1\)
b.Thế `x=-1/2;y=-1` vào `A` ta được:
\(A=3.\left(-\dfrac{1}{2}\right).\left(-1\right)^2+8.\left(-\dfrac{1}{2}\right).\left(-1\right)+1\)
\(A=-\dfrac{3}{2}+4+1\)
\(A=\dfrac{-3+10}{2}\)
\(A=\dfrac{7}{2}\)
a: \(A=\left(-2xy^2+5xy^2\right)+\left(3xy+5xy\right)+1=3xy^2+8xy+1\)
b: Khi x=-1/2 và y=-1 thì \(A=3\cdot\dfrac{-1}{2}\cdot1+8\cdot\dfrac{-1}{2}\cdot\left(-1\right)+1\)
\(=-\dfrac{3}{2}+4+1=5-\dfrac{3}{2}=\dfrac{7}{2}\)