tính nhanh:
A=2/4+2/28+2/70+...+2/9700
giải ra hộ mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = {4;28;76;154 } : khoảng cách 2 số trước gâp đôi lên thì bằng số sau
B = {1;3;6;10;15;21;28} : khoảng cách của chúng là các số tự nhiên liên tiếp bắt đầu từ 2
Dãy số 1, 2, 3,. .., 150 có 150 số.
Trong 150 số có
+ 9 số có 1 chữ số
+ 90 số có 2 chữ số
+ Các số có 3 chữ số là: 150 – 9 – 90 = 51 (chữ số)
Dãy này có số chữ số là:
1 x 9 + 2 x 90 + 3 x 51 = 342 (chữ số)
Đáp số: 342 chữ số
A = 1/4 + 1/28 + 1/70 +...+ 1/9700
A = 1/1.4 + 1/4.7 + 1/7.10 +...+ 1/97.100
3A = 3/1.4 + 3/4.7 + 3/7.10 +...+ 3/97.100
3A = 1 - 1/100
3A = 99/100
A=99/100:3=33/100
\(=\frac{1}{1.4}+\frac{1}{4.7}+..+\frac{1}{97.100}\)
\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)
\(\frac{2}{4}+\frac{2}{28}+\frac{2}{70}+\frac{2}{130}+\frac{2}{208}\)
= \(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+\frac{2}{13.16}\)
= \(\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{13.16}\right)\)
= \(\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
= \(\frac{2}{3}.\left(1-\frac{1}{16}\right)\)
= \(\frac{2}{3}.\frac{15}{16}\)
= \(\frac{5}{8}\)
2/4 + 2/28 + 2/70 + 2/130 + 2/208
= 2/1.4 + 2/4.7 + 1/7.10 + 1/10.13 + 1/13.16
= 2/3.(1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + 1/13 - 1/16)
= 2/3.(1 - 1/16)
= 2/3.15/16
= 5/8
P/s: "." là nhân nhé :V
a, thì dễ rồi bạn tự làm nhé
mk làm câu b thôi
b,\(\frac{1}{1x2}\)+ \(\frac{1}{2x3}\)+......+\(\frac{1}{99x100}\)
= 1 - \(\frac{1}{2}\)+ \(\frac{1}{2}\)-\(\frac{1}{3}\)+....+\(\frac{1}{99}\)- \(\frac{1}{100}\)
= 1 - \(\frac{1}{100}\)
= \(\frac{99}{100}\)
\(3M=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
\(3M=\frac{4-1}{1.4}+\frac{7-4}{4.7}+...+\frac{100-97}{97.100}\)
\(3M=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(3M=1-\frac{1}{100}\)
\(3M=\frac{99}{100}\)
\(M=\frac{33}{100}\)
\(\dfrac{3}{2}xA=\dfrac{3}{1x4}+\dfrac{3}{4x7}+\dfrac{3}{7x10}+...+\dfrac{3}{97x100}=\)
\(=\dfrac{4-1}{1x4}+\dfrac{7-4}{4x7}+\dfrac{10-7}{7x10}+...+\dfrac{100-97}{97x100}=\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}=\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\Rightarrow A=\dfrac{99}{100}x\dfrac{2}{3}=\dfrac{33}{50}\)