Cho đường tròn tâm O, bán kính R. Từ điểm M nằm ngoài đường tròn vẽ các tiếp tuyến MA, MB ( A, B thuộc (O)). Vẽ cát tuyến MCD không đi qua O (C nằm giữa M và D). Gọi H là trung điểm dây CD
a. CM các điểm M,A,O,H,B cùng thuộc 1 đg tròn
b. CM: MC.MD=MO2-R2
c. Tia BH cắt (O) tại F. CM AF song song CD
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)
nên MAOB là tứ giác nội tiếp(1)
Xét tứ giác OHMB có \(\widehat{OHM}+\widehat{OBM}=180^0\)
nên OHMB là tứ giác nội tiếp(2)
Từ (1) và (2) suy ra O,H,A,M,B cùng thuộc đường tròn
b: Xét ΔMAC và ΔMDA có
\(\widehat{MAC}=\widehat{MDA}\)
\(\widehat{AMC}\) chung
Do đó:ΔMAC\(\sim\)ΔMDA
Suy ra: MA/MD=MC/MA
hay \(MA^2=MD\cdot MC=MO^2-R^2\)
xin hình vẽ vs ạ